File size: 2,305 Bytes
b11ac77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google/flan-t5-base
model-index:
- name: flan-t5-base-Mistral7BI-LORA-V1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-Mistral7BI-LORA-V1
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6273
- Exact Match: 32.8431
- Gen Len: 3.8500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-----------:|:-------:|
| 0.6768 | 1.0 | 4246 | 0.7026 | 24.8937 | 3.9547 |
| 0.6585 | 2.0 | 8492 | 0.6736 | 27.4687 | 3.9347 |
| 0.6501 | 3.0 | 12738 | 0.6543 | 29.961 | 3.8808 |
| 0.7615 | 4.0 | 16984 | 0.6446 | 29.7189 | 3.8876 |
| 0.5709 | 5.0 | 21230 | 0.6413 | 30.9828 | 3.8304 |
| 0.6062 | 6.0 | 25476 | 0.6387 | 31.7328 | 3.8798 |
| 0.5539 | 7.0 | 29722 | 0.6318 | 31.4907 | 3.8315 |
| 0.5708 | 8.0 | 33968 | 0.6319 | 32.2939 | 3.8669 |
| 0.6859 | 9.0 | 38214 | 0.6269 | 32.6069 | 3.8267 |
| 0.6026 | 10.0 | 42460 | 0.6271 | 32.6246 | 3.8338 |
| 0.5558 | 11.0 | 46706 | 0.6272 | 32.7014 | 3.8460 |
| 0.566 | 12.0 | 50952 | 0.6273 | 32.8431 | 3.8500 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.19.2
- Tokenizers 0.19.1 |