GIZ
/

ppsingh commited on
Commit
32f41d6
1 Parent(s): f992547

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -5
README.md CHANGED
@@ -6,6 +6,18 @@ tags:
6
  model-index:
7
  - name: CONDITIONAL-multilabel-climatebert
8
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,7 +25,7 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # CONDITIONAL-multilabel-climatebert
15
 
16
- This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
  - Loss: 0.5460
19
  - Precision-micro: 0.5020
@@ -28,15 +40,33 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
 
 
 
 
 
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
 
 
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Training procedure
42
 
@@ -63,10 +93,26 @@ The following hyperparameters were used during training:
63
  | 0.069 | 5.0 | 1845 | 0.5016 | 0.5126 | 0.1920 | 0.5193 | 0.7439 | 0.1912 | 0.7439 | 0.6070 | 0.1899 | 0.6090 |
64
  | 0.0353 | 6.0 | 2214 | 0.5460 | 0.5020 | 0.1954 | 0.5047 | 0.7530 | 0.1937 | 0.7530 | 0.6024 | 0.1927 | 0.6033 |
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ### Framework versions
68
 
69
  - Transformers 4.38.1
70
  - Pytorch 2.1.0+cu121
71
  - Datasets 2.18.0
72
- - Tokenizers 0.15.2
 
6
  model-index:
7
  - name: CONDITIONAL-multilabel-climatebert
8
  results: []
9
+ datasets:
10
+ - GIZ/policy_classification
11
+
12
+ co2_eq_emissions:
13
+ emissions: 17.3317785017907
14
+ source: codecarbon
15
+ training_type: fine-tuning
16
+ on_cloud: true
17
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.00GHz
18
+ ram_total_size: 12.6747894287109
19
+ hours_used: 0.384
20
+ hardware_used: 1 x Tesla T4
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
25
 
26
  # CONDITIONAL-multilabel-climatebert
27
 
28
+ This model is a fine-tuned version of [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
29
  It achieves the following results on the evaluation set:
30
  - Loss: 0.5460
31
  - Precision-micro: 0.5020
 
40
 
41
  ## Model description
42
 
43
+ The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict 2 labels -
44
+ ConditionalLabel, UnconditionalLabel - that are relevant to a particular task or application
45
+ - **Conditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made conditionally.
46
+ - **Unconditional**: In context of climate policy documents if certain Target/Action/Plan/Policy commitment is being made unconditionally.
47
+
48
+
49
 
50
  ## Intended uses & limitations
51
 
52
+ The dataset sometimes does not include the sub-heading/heading which indicates that the paragraph belongs to Conditional/Unconditional category.
53
+ But has been copied from the relevant document from those sub-headings. This makes the assessment of Conditonality very difficult. Annotator when given only the paragraph without
54
+ the full long context had a difficulty in assessing the conditionality of commitments being made in paragraph.
55
 
56
  ## Training and evaluation data
57
 
58
+ - Training Dataset: 5901
59
+ | Class | Positive Count of Class|
60
+ |:-------------|:--------|
61
+ | ConditionalLabel | 1986 |
62
+ | UnconditionalLabel | 1312 |
63
+
64
+
65
+ - Validation Dataset: 1190
66
+ | Class | Positive Count of Class|
67
+ |:-------------|:--------|
68
+ | ConditionalLabel | 192 |
69
+ | UnconditionalLabel | 136 |
70
 
71
  ## Training procedure
72
 
 
93
  | 0.069 | 5.0 | 1845 | 0.5016 | 0.5126 | 0.1920 | 0.5193 | 0.7439 | 0.1912 | 0.7439 | 0.6070 | 0.1899 | 0.6090 |
94
  | 0.0353 | 6.0 | 2214 | 0.5460 | 0.5020 | 0.1954 | 0.5047 | 0.7530 | 0.1937 | 0.7530 | 0.6024 | 0.1927 | 0.6033 |
95
 
96
+ |label | precision |recall |f1-score| support|
97
+ |:-------------:|:---------:|:-----:|:------:|:------:|
98
+ |ConditionalLabel |0.477 |0.765 |0.588 | 192.0 |
99
+ |UnconditionalLabel |0.543 |0.735 | 0.625 | 136.0 |
100
+ |
101
+
102
+ ### Environmental Impact
103
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
104
+ - **Carbon Emitted**: 0.01733 kg of CO2
105
+ - **Hours Used**: 0.383 hours
106
+
107
+ ### Training Hardware
108
+ - **On Cloud**: yes
109
+ - **GPU Model**: 1 x Tesla T4
110
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
111
+ - **RAM Size**: 12.67 GB
112
 
113
  ### Framework versions
114
 
115
  - Transformers 4.38.1
116
  - Pytorch 2.1.0+cu121
117
  - Datasets 2.18.0
118
+ - Tokenizers 0.15.2