File size: 3,155 Bytes
0461047
 
3c72ada
 
 
0461047
 
 
3c72ada
0461047
 
 
 
 
 
 
 
 
 
 
 
 
3c72ada
0461047
3c72ada
0461047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
- GaetanMichelet/chat-120_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_120-samples_config-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-2_120-samples_config-3

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2 and the GaetanMichelet/chat-120_ft_task-2 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.7139

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0459        | 1.0   | 11   | 1.1227          |
| 1.0223        | 2.0   | 22   | 1.1149          |
| 1.0795        | 3.0   | 33   | 1.1018          |
| 0.9982        | 4.0   | 44   | 1.0787          |
| 0.9702        | 5.0   | 55   | 1.0444          |
| 0.9509        | 6.0   | 66   | 0.9990          |
| 0.9573        | 7.0   | 77   | 0.9500          |
| 0.8624        | 8.0   | 88   | 0.9071          |
| 0.8804        | 9.0   | 99   | 0.8747          |
| 0.8515        | 10.0  | 110  | 0.8457          |
| 0.7864        | 11.0  | 121  | 0.8208          |
| 0.8648        | 12.0  | 132  | 0.8018          |
| 0.736         | 13.0  | 143  | 0.7867          |
| 0.7882        | 14.0  | 154  | 0.7728          |
| 0.7452        | 15.0  | 165  | 0.7604          |
| 0.6818        | 16.0  | 176  | 0.7485          |
| 0.7119        | 17.0  | 187  | 0.7387          |
| 0.7107        | 18.0  | 198  | 0.7307          |
| 0.6405        | 19.0  | 209  | 0.7238          |
| 0.6075        | 20.0  | 220  | 0.7188          |
| 0.6323        | 21.0  | 231  | 0.7152          |
| 0.557         | 22.0  | 242  | 0.7139          |
| 0.5692        | 23.0  | 253  | 0.7158          |
| 0.558         | 24.0  | 264  | 0.7198          |
| 0.5153        | 25.0  | 275  | 0.7296          |
| 0.4964        | 26.0  | 286  | 0.7367          |
| 0.4713        | 27.0  | 297  | 0.7403          |
| 0.4144        | 28.0  | 308  | 0.7620          |
| 0.4184        | 29.0  | 319  | 0.7954          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1