File size: 2,475 Bytes
7878701
 
380171f
 
 
 
7878701
 
 
380171f
7878701
 
 
 
 
 
 
 
 
 
 
 
 
380171f
7878701
380171f
7878701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
- GaetanMichelet/chat-120_ft_task-2
- GaetanMichelet/chat-180_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_180-samples_config-1_full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-2_180-samples_config-1_full

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2, the GaetanMichelet/chat-120_ft_task-2 and the GaetanMichelet/chat-180_ft_task-2 datasets.
It achieves the following results on the evaluation set:
- Loss: 1.0345

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.504         | 1.0   | 17   | 1.5036          |
| 1.3344        | 2.0   | 34   | 1.3101          |
| 1.0895        | 3.0   | 51   | 1.1146          |
| 0.9755        | 4.0   | 68   | 1.0741          |
| 0.9637        | 5.0   | 85   | 1.0524          |
| 0.9215        | 6.0   | 102  | 1.0349          |
| 0.8984        | 7.0   | 119  | 1.0345          |
| 0.7983        | 8.0   | 136  | 1.0459          |
| 0.711         | 9.0   | 153  | 1.0750          |
| 0.6725        | 10.0  | 170  | 1.1344          |
| 0.629         | 11.0  | 187  | 1.1630          |
| 0.4573        | 12.0  | 204  | 1.2680          |
| 0.4754        | 13.0  | 221  | 1.2757          |
| 0.4236        | 14.0  | 238  | 1.3371          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1