--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-3_120-samples_config-1_auto results: [] --- # Llama-31-8B_task-3_120-samples_config-1_auto This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0265 | 1.0 | 11 | 1.8663 | | 0.6418 | 2.0 | 22 | 0.6536 | | 0.2518 | 3.0 | 33 | 0.4136 | | 0.3244 | 4.0 | 44 | 0.3523 | | 0.3276 | 5.0 | 55 | 0.3385 | | 0.3029 | 6.0 | 66 | 0.3260 | | 0.2127 | 7.0 | 77 | 0.3446 | | 0.1592 | 8.0 | 88 | 0.3747 | | 0.1194 | 9.0 | 99 | 0.4065 | | 0.0429 | 10.0 | 110 | 0.4991 | | 0.0213 | 11.0 | 121 | 0.5293 | | 0.0509 | 12.0 | 132 | 0.5701 | | 0.0154 | 13.0 | 143 | 0.5772 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1