File size: 3,128 Bytes
4dbaa51 6c9e1ff 4dbaa51 6c9e1ff 4dbaa51 6c9e1ff 4dbaa51 6c9e1ff 4dbaa51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-3
- GaetanMichelet/chat-120_ft_task-3
- GaetanMichelet/chat-180_ft_task-3
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-3_180-samples_config-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-31-8B_task-3_180-samples_config-3
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-3, the GaetanMichelet/chat-120_ft_task-3 and the GaetanMichelet/chat-180_ft_task-3 datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3708 | 1.0 | 17 | 2.4982 |
| 2.4065 | 2.0 | 34 | 2.4397 |
| 2.3549 | 3.0 | 51 | 2.3147 |
| 2.0578 | 4.0 | 68 | 2.0850 |
| 1.8089 | 5.0 | 85 | 1.7080 |
| 1.3018 | 6.0 | 102 | 1.2347 |
| 1.0212 | 7.0 | 119 | 0.8016 |
| 0.4899 | 8.0 | 136 | 0.6475 |
| 0.6106 | 9.0 | 153 | 0.5890 |
| 0.5388 | 10.0 | 170 | 0.5729 |
| 0.7245 | 11.0 | 187 | 0.5585 |
| 0.3568 | 12.0 | 204 | 0.5533 |
| 0.4165 | 13.0 | 221 | 0.5353 |
| 0.6226 | 14.0 | 238 | 0.5420 |
| 0.3284 | 15.0 | 255 | 0.5026 |
| 0.4813 | 16.0 | 272 | 0.5214 |
| 0.3015 | 17.0 | 289 | 0.5116 |
| 0.3513 | 18.0 | 306 | 0.5071 |
| 0.3638 | 19.0 | 323 | 0.5486 |
| 0.5246 | 20.0 | 340 | 0.4813 |
| 0.4751 | 21.0 | 357 | 0.5369 |
| 0.2074 | 22.0 | 374 | 0.5177 |
| 0.2513 | 23.0 | 391 | 0.5109 |
| 0.3019 | 24.0 | 408 | 0.5100 |
| 0.2039 | 25.0 | 425 | 0.5429 |
| 0.228 | 26.0 | 442 | 0.5161 |
| 0.2127 | 27.0 | 459 | 0.5206 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |