--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - trl - sft - generated_from_trainer model-index: - name: Llama-31-8B_task-3_60-samples_config-4 results: [] --- # Llama-31-8B_task-3_60-samples_config-4 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.4485 | 0.6957 | 2 | 2.4786 | | 2.4413 | 1.7391 | 5 | 2.4667 | | 2.6263 | 2.7826 | 8 | 2.4443 | | 2.1438 | 3.8261 | 11 | 2.4112 | | 2.3995 | 4.8696 | 14 | 2.3654 | | 2.2475 | 5.9130 | 17 | 2.3021 | | 2.2194 | 6.9565 | 20 | 2.2092 | | 2.2976 | 8.0 | 23 | 2.0988 | | 2.0386 | 8.6957 | 25 | 2.0090 | | 1.8757 | 9.7391 | 28 | 1.8478 | | 1.753 | 10.7826 | 31 | 1.6617 | | 1.5394 | 11.8261 | 34 | 1.4736 | | 1.4055 | 12.8696 | 37 | 1.2968 | | 1.1544 | 13.9130 | 40 | 1.1374 | | 1.0965 | 14.9565 | 43 | 0.9952 | | 0.8824 | 16.0 | 46 | 0.8632 | | 0.8412 | 16.6957 | 48 | 0.7849 | | 0.7232 | 17.7391 | 51 | 0.7002 | | 0.6275 | 18.7826 | 54 | 0.6459 | | 0.6078 | 19.8261 | 57 | 0.6102 | | 0.5477 | 20.8696 | 60 | 0.5828 | | 0.4369 | 21.9130 | 63 | 0.5587 | | 0.5025 | 22.9565 | 66 | 0.5396 | | 0.5043 | 24.0 | 69 | 0.5226 | | 0.3742 | 24.6957 | 71 | 0.5101 | | 0.449 | 25.7391 | 74 | 0.5003 | | 0.3276 | 26.7826 | 77 | 0.4925 | | 0.4754 | 27.8261 | 80 | 0.4932 | | 0.3724 | 28.8696 | 83 | 0.4876 | | 0.4679 | 29.9130 | 86 | 0.4861 | | 0.3245 | 30.9565 | 89 | 0.4884 | | 0.3613 | 32.0 | 92 | 0.4922 | | 0.3511 | 32.6957 | 94 | 0.4899 | | 0.5275 | 33.7391 | 97 | 0.4931 | | 0.3403 | 34.7826 | 100 | 0.4883 | | 0.4209 | 35.8261 | 103 | 0.4815 | | 0.3543 | 36.8696 | 106 | 0.4805 | | 0.4115 | 37.9130 | 109 | 0.4767 | | 0.3902 | 38.9565 | 112 | 0.4794 | | 0.3735 | 40.0 | 115 | 0.4776 | | 0.3227 | 40.6957 | 117 | 0.4733 | | 0.2983 | 41.7391 | 120 | 0.4797 | | 0.4421 | 42.7826 | 123 | 0.4791 | | 0.3819 | 43.8261 | 126 | 0.4739 | | 0.2965 | 44.8696 | 129 | 0.4764 | | 0.2661 | 45.9130 | 132 | 0.4765 | | 0.3827 | 46.9565 | 135 | 0.4778 | | 0.3144 | 48.0 | 138 | 0.4797 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1