DQN first approach.
Browse files- .gitattributes +1 -0
- DQN-mountaincar-first-approach.zip +3 -0
- DQN-mountaincar-first-approach/_stable_baselines3_version +1 -0
- DQN-mountaincar-first-approach/data +125 -0
- DQN-mountaincar-first-approach/policy.optimizer.pth +3 -0
- DQN-mountaincar-first-approach/policy.pth +3 -0
- DQN-mountaincar-first-approach/pytorch_variables.pth +3 -0
- DQN-mountaincar-first-approach/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
DQN-mountaincar-first-approach.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01840c642795d7855561cd4aa12fcf68e1e04803dfc29c7bbd0f7c3a8c4b9ac5
|
3 |
+
size 1103791
|
DQN-mountaincar-first-approach/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.3.0
|
DQN-mountaincar-first-approach/data
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fd583da16a8>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7fd583da1730>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fd583da17b8>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7fd583da1840>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7fd583da18c8>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd583da1950>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd583da19d8>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583da4ba8>",
|
16 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583da4be0>",
|
17 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583da4c50>",
|
18 |
+
"_abc_negative_cache_version": 59
|
19 |
+
},
|
20 |
+
"verbose": 0,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"net_arch": [
|
23 |
+
256,
|
24 |
+
256
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
29 |
+
":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
30 |
+
"dtype": "float32",
|
31 |
+
"shape": [
|
32 |
+
2
|
33 |
+
],
|
34 |
+
"low": "[-1.2 -0.07]",
|
35 |
+
"high": "[0.6 0.07]",
|
36 |
+
"bounded_below": "[ True True]",
|
37 |
+
"bounded_above": "[ True True]",
|
38 |
+
"_np_random": null
|
39 |
+
},
|
40 |
+
"action_space": {
|
41 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
42 |
+
":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAASmQR/pQed60S31pUbuaT+M5i6SMlTZFfei6QjqHyRzf0LlRgLFh2BQFG1rRgYoujQW8GzA33s2KBlJnd/ffgrYcZHcyX0jRtOF8KLTpT1X+MRumOrOq/byjARja9igtB+iZK0DgIdbPJInWdnsCHhLOqKGYmqNO0J8g4ColXqnFdMK0dpQiBlGgMsxlEuVCgtInmsZG7QwLCEwcVqhDoSu5rZIc6GEhwTCeRIUpMGC2TXUNOAhlnwcipY+TiW3KcV0kVH7YGErrODNp9Mucaht4zvxjR1Ei7D4/qRz1tVkleCNcsGPiSYJ2/C2MAOYIRpKmeAynCAwY2o+ohqSvWKjR7uuo56h2RE4LptQENQbECQtqVC/eyZTwgig3Hvj2lltEvvqE6ZBvUM4xknM+TyfsCohp4YjshlmBBz4XfudamS10aRv09Z41/pcFeoanBLwWFzoEsvvq+6IaBLM07Q5tiUJEykxe98vYuGsrh0wBwAzKEBVZsf4mBd0i8DJc5bDRGsdEppUPpkBAh/dZiUEfm4Kgfu9ZgkOUVv20FBgAqrbnkWQBvpSlDWSdPo0MszI3qg1MAe0ns73Ly9Oz7eOSgjl4gqeEDZ2M90LdFr/yZ2XcCyIkAAPdamSYMC/sGsmAONhO7QPo3JJKfOx771I0cAD+d6Px/bmqvbII3mH9tEl9epeBIPyRl69StSiLNA8KHNAIJUnZGZkWR7GykQWc15uOAyUCBMJISxeGUNpGPJBCZrEYvhO6duBeuxN0ZeW2toMI9foEgqPJk34SqIUx9AViTbNoqn0x6z85vMrqUImlQmglnD2jEzi1u12dIbsaVnHGJjRp/qSo/wQPjdDc2oU7B9b1rMOx1yUOKZldaHDLXWd1HtOgbvd4c0++lHioiFMBisitoB0zw7ct+j1N0zNxYpOpjBBUtLh+nC7ExMSBDwWwy9BTzaM9/zAjQ1LI7HeOZDvejcZDP8F4Ix3pXjxTZHZzoHWCsm9GwcnEEhkXe2nKof4/bNfQKMiDXn/jlDjMCIVylX6IOTgycvv/c98a7OUXfW92HxQp+DH0z0cMqlKad7bI7CT4M+LlMtbe2l8lEJ59LRduGkXeq0jW+WL/RpPL171swRfbrEbLofW5eviT7Q3wjfTQk748XsuQHNHvlzhSP0BPI1odcNnKt9bwQOkYPDTkwS+pQCKMGgdoJz3eDEPYMrGyv4rfXsp71bZ0StA4Kx6AiTsAI4rvMboOeZgXxKFT/JVqFr1JEcLsbYXAjvZ1IR85kfu0ziE/GVQJrq4/BI5soN43f0gUX71CFMuAqLXUZfDX90vSDLkJc7LctFKGhBLezJ/WY+Z8m5LO6LGhy/tlCvfhTRI2PDAENu2O1JL7Cfqrqgon9urD8ljYEorPaYUOAnO5O/jUpeL476a6O/JTwCCEHFnj01/B7bJ9ZNKEf8H0SfmqSO8qWMfW4p3M8D06JNLVTYaKcFI3fSLZE5u4W4d8ZFZq6uITYf31F2eCjaCaur6B2xesl9O+DTLqC6ddQ/5QiqQEigCKup3/8vnYQQCSIDnmDTozlFOigfddeOn+zuRcWyZdTx3wZrri83al2A8gUhOFsRE6sU/bu11HESfgWMuqKOUR138PEsPZeG3ZGzikbw5gjb08yxkpezW7i+m1s80JPX61slD/jW9JEXiQt0C9uPy/tlikZmoc7CQzya+DE87F2rspwHzBf/TlMMZakuHJZaTWtgLJ+pV02avUBMyDu1tO5Spb5D17e1OFl4DULUt0WSSdBn3p+udk3+axVNnIz1MKw3zqFYR9H/WgFRUAXZPuCfXJSSmFuC0/UBVxwQ/kBK4b7JXrT4wTYXyHtltW6U8j7siueGlu3t5r/UEayvALgIUF+QJww0de7q5GCNDj8IvvyId50A9ANKjMz0R1Ziqrzp9STGVcJWb9xDiaxuCGkYivxv8o+aDCs/TfITrC5DzpxBvs6V4qjcn3hOQGy1vDBH2Rsxps6pTTDFcJ/gFlMTUSwmhw02gjK77igXf85mURfSQb+KMgQzF7staj+gHm/STVDg2GMFLpboWhSx1s+3S73c0pJZIdJV1RZPiOur5Rq4EbA1oauLKGm5YlmR7m5tQxfLsuj53+f+i0GR0lZcCnSkkyMLxN0/TIDzdaYTVVLmMS10zZ+aHE57ygN4sBufEQ0vk3JRAWCasc8QokSi/SWAyD+o3UuyzmBuWUhvx3JYCF2eallUzHOobXc5eSuAmw2l5MMLiLfzD7AAY3Y4a+pmi2agaqEqtv1FS43GaRwks9IuCZEn8PegOIvY89Kz0wDDYWilBNwv7/oAXsynPcbaYpSO5LuPMo8DryJaMeYGRuNC4jxaQ+AhZhmS5tQ2XNIYXTcj2V9B3ACe0if9i7E5eCZpgP8nvUcdbJKGX2E9iZ1lnacBkLx5tRXbhcDuEsk+P/3fjVZd00FXDw/SE6jW4WPCaJ7V8gOP7HXpRqaGeZzT37rBQjboRQyvKvOBrBgum6LquUyYAZjDgyHGmuWfPOiNrwji0GzJQgOoGfedEDggB1zCI6D+iJ3htoFeSXcLEcIJ1/CtYyLZ9mw9+eRVN5iElArKvbLkCBaOMEJvgbiHs1Hzd+NnNQ52rbMQ3J+PAhTs3A0xP7QhkYAFLJVEIIS1gMvm/EhWHzUyrJKNYBrtetwc4pBkw9w0tWoCI+/rHY0yQmTs21p7zAM6k1wtKp68kyfOhoikROhcoYA45CM+SxMd9cv/ue1a8th3KLTN+6nMKItWvUE+Qb1lcg/fYSiYufiHtemJI5jsvxEfR+eomvjmn2RjTHi8T3Xg0vAOc3BKiDB6UIgkNH8dp9PXTKGRXCblYqfRfypqh6qCvlghgSEQNUuq9ENAg06qD9MA6HxpBJmVZfRschou4Ph9IMlYtFoAkWQuNkZGMCFWgc19hzr4BCslZpKc9EYXMDFjYoaQt2jsHaqust4jJAHZ0c/Q68Id3nUAXnyvf3vMDZIWZj8+XRK2eN6bm10GCJQNxbOOnCuvGcLGwFCBLhkgSBA6Lsv/Rutv/g1zPV7LDGino602c+Sw52nzQ9YlxUZs0ose+FrWWq85iL/VXXq00Arsu6mElInVXjC+DazUUJIllMWkWT23/T1rzo5dH9Yic3qa07Sa+ZxN8FvGFPhhTsSrbSNugOWjUH8gZOh+CIsHaMzaiwsY+dNl/tGIXkcG+df44SJkSLOCZ2Ht3f0/T9gkCYUuT59XpeTnygiX9wOrCChWqxeLWDQAuiJR5KHTZBTxCu0DnqIdm/N4LWYeTCZIw8JeAQLCf/MxV+bY6ERNfHAO244lHSUYowDcG9zlEtZdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
43 |
+
"n": 3,
|
44 |
+
"shape": [],
|
45 |
+
"dtype": "int64",
|
46 |
+
"_np_random": "RandomState(MT19937)"
|
47 |
+
},
|
48 |
+
"n_envs": 1,
|
49 |
+
"num_timesteps": 105000,
|
50 |
+
"_total_timesteps": 120000.0,
|
51 |
+
"seed": null,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1654464798.7293901,
|
54 |
+
"learning_rate": 0.004,
|
55 |
+
"tensorboard_log": "./dqn_mountain_car_tensorboard/",
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMINJyYv1/vszuUdJRiLg=="
|
63 |
+
},
|
64 |
+
"_last_episode_starts": {
|
65 |
+
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
67 |
+
},
|
68 |
+
"_last_original_obs": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMII1CZv8bsEjuUdJRiLg=="
|
71 |
+
},
|
72 |
+
"_episode_num": 538,
|
73 |
+
"use_sde": false,
|
74 |
+
"sde_sample_freq": -1,
|
75 |
+
"_current_progress_remaining": 0.1250083333333334,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bumpl6JIlMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BupozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuwFxKg7HRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuzH/io86ndX2UKGgGR8BegAAAAAAAaAdLemgIR0Bu1G7nPmgbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu7jXnQpnZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu+aIcinpCdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BvAKZa3ZwodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvGnyqdYnwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BvI8OVgQYldX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BvKdke6qbSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BvQCePJaJRdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BvSTKifxtpdX2UKGgGR8BogAAAAAAAaAdLxGgIR0BvVYgTyrggdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvbPm9xp+MdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bvc1MRHww1dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BvfC3PRiPRdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bvk0JWvKU3dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0Bvn3YSQHRkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BvqMe6qbSadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvwpOWSlnAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bvz+oo/iYLdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bv124XoC+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv8UYCQtBfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv/tXo1UEQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwBZeY2Kl6dX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BwEjCzkZJkdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BwFb6JqIrOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwHGc4HX2/dX2UKGgGR8BnYAAAAAAAaAdLu2gIR0BwJ9fsu3+ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwLrP6be/IdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BwOunbZezEdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BwQIOSW7e3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwRp/EwWWQdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BwUkgKWszVdX2UKGgGR8BowAAAAAAAaAdLxmgIR0BwWLvJA+pwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BwXT+fh/AkdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0BwaFhZyMkydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwbtVNpM6BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwdO1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bwgdkwvg3tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwiBEx7AtWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwlRHmRvFWdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0Bwmzehwl0HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwoVksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwrvIvJzT4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwtSb+cYqHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwwgBnzxwydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwyBXfZVXFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwzpFa0QbudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw20th/iHZdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bw39f7aZhKdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Bw5MUtZmqYdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bw8LvKEFnqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw9zgvUSZjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxA2M3qAz6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxCf7cfvF4dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxDyc5Ke05dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxHIglnh86dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxIqm2sq8UdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BxJ7bO/tY0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxNKrGR3eOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxOruKGcnWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxRdHd43WGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxS/Zh8YygdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxUpQxesxPdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BxXZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxY8D7qIJrdX2UKGgGR8BawAAAAAAAaAdLa2gIR0BxZzfGdZq3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxc2qfe1rqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxeZXq7iAEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxhwQz1scidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxjUppeu3ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxk/E9+w1SdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bxnwy6+WWydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxpV2V3Ux3dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0BxqgeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxtxO0svqUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxvjPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxxUdtEXtTdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bx0GdhAnlXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0Bx1vSqlxffdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bx3DewcHW0dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Bx6M70WdmQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx733QD3dsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx+mPwNLDidX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bx/75mAbyZdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0ByA2Xsw+MZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByEHxJ/XoUdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0ByFUMMI/qxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByG9j+aScLdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0ByIEPpY9xIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLNvZRKpUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByMzUPQOWjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByQTCgsbvPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BySF92HLzPdX2UKGgGR8BhIAAAAAAAaAdLiWgIR0ByTT8CPp6hdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByW5E/jbSJdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0ByX1Mbm2b5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0ByY0QI2OyWdWUu"
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 52000,
|
85 |
+
"buffer_size": 10000,
|
86 |
+
"batch_size": 128,
|
87 |
+
"learning_starts": 1000,
|
88 |
+
"tau": 1.0,
|
89 |
+
"gamma": 0.98,
|
90 |
+
"gradient_steps": 8,
|
91 |
+
"optimize_memory_usage": false,
|
92 |
+
"replay_buffer_class": {
|
93 |
+
":type:": "<class 'abc.ABCMeta'>",
|
94 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
95 |
+
"__module__": "stable_baselines3.common.buffers",
|
96 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
97 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fd583df28c8>",
|
98 |
+
"add": "<function ReplayBuffer.add at 0x7fd583df2950>",
|
99 |
+
"sample": "<function ReplayBuffer.sample at 0x7fd583df29d8>",
|
100 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fd583df2a60>",
|
101 |
+
"__abstractmethods__": "frozenset()",
|
102 |
+
"_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583ed5080>",
|
103 |
+
"_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583ed50f0>",
|
104 |
+
"_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583ed5160>",
|
105 |
+
"_abc_negative_cache_version": 59
|
106 |
+
},
|
107 |
+
"replay_buffer_kwargs": {},
|
108 |
+
"remove_time_limit_termination": false,
|
109 |
+
"train_freq": {
|
110 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
111 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
112 |
+
},
|
113 |
+
"actor": null,
|
114 |
+
"use_sde_at_warmup": false,
|
115 |
+
"exploration_initial_eps": 1.0,
|
116 |
+
"exploration_final_eps": 0.07,
|
117 |
+
"exploration_fraction": 0.2,
|
118 |
+
"target_update_interval": 600,
|
119 |
+
"max_grad_norm": 10,
|
120 |
+
"exploration_rate": 0.07,
|
121 |
+
"exploration_schedule": {
|
122 |
+
":type:": "<class 'function'>",
|
123 |
+
":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
124 |
+
}
|
125 |
+
}
|
DQN-mountaincar-first-approach/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beb8f3f7caaeb46b3ed5588163e73b193b16897269f299272fd8ee789b897bfa
|
3 |
+
size 541953
|
DQN-mountaincar-first-approach/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2af67bcae13c83c8e272d8b72843ba1dbe07a16e6fa41fd133178ac2e6b745f2
|
3 |
+
size 542721
|
DQN-mountaincar-first-approach/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-mountaincar-first-approach/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022
|
2 |
+
Python: 3.6.9
|
3 |
+
Stable-Baselines3: 1.3.0
|
4 |
+
PyTorch: 1.10.2+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.19.5
|
7 |
+
Gym: 0.19.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -125.80 +/- 49.79
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fd583da16a8>", "_build": "<function DQNPolicy._build at 0x7fd583da1730>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd583da17b8>", "forward": "<function DQNPolicy.forward at 0x7fd583da1840>", "_predict": "<function DQNPolicy._predict at 0x7fd583da18c8>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd583da1950>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd583da19d8>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583da4ba8>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583da4be0>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583da4c50>", "_abc_negative_cache_version": 59}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAASmQR/pQed60S31pUbuaT+M5i6SMlTZFfei6QjqHyRzf0LlRgLFh2BQFG1rRgYoujQW8GzA33s2KBlJnd/ffgrYcZHcyX0jRtOF8KLTpT1X+MRumOrOq/byjARja9igtB+iZK0DgIdbPJInWdnsCHhLOqKGYmqNO0J8g4ColXqnFdMK0dpQiBlGgMsxlEuVCgtInmsZG7QwLCEwcVqhDoSu5rZIc6GEhwTCeRIUpMGC2TXUNOAhlnwcipY+TiW3KcV0kVH7YGErrODNp9Mucaht4zvxjR1Ei7D4/qRz1tVkleCNcsGPiSYJ2/C2MAOYIRpKmeAynCAwY2o+ohqSvWKjR7uuo56h2RE4LptQENQbECQtqVC/eyZTwgig3Hvj2lltEvvqE6ZBvUM4xknM+TyfsCohp4YjshlmBBz4XfudamS10aRv09Z41/pcFeoanBLwWFzoEsvvq+6IaBLM07Q5tiUJEykxe98vYuGsrh0wBwAzKEBVZsf4mBd0i8DJc5bDRGsdEppUPpkBAh/dZiUEfm4Kgfu9ZgkOUVv20FBgAqrbnkWQBvpSlDWSdPo0MszI3qg1MAe0ns73Ly9Oz7eOSgjl4gqeEDZ2M90LdFr/yZ2XcCyIkAAPdamSYMC/sGsmAONhO7QPo3JJKfOx771I0cAD+d6Px/bmqvbII3mH9tEl9epeBIPyRl69StSiLNA8KHNAIJUnZGZkWR7GykQWc15uOAyUCBMJISxeGUNpGPJBCZrEYvhO6duBeuxN0ZeW2toMI9foEgqPJk34SqIUx9AViTbNoqn0x6z85vMrqUImlQmglnD2jEzi1u12dIbsaVnHGJjRp/qSo/wQPjdDc2oU7B9b1rMOx1yUOKZldaHDLXWd1HtOgbvd4c0++lHioiFMBisitoB0zw7ct+j1N0zNxYpOpjBBUtLh+nC7ExMSBDwWwy9BTzaM9/zAjQ1LI7HeOZDvejcZDP8F4Ix3pXjxTZHZzoHWCsm9GwcnEEhkXe2nKof4/bNfQKMiDXn/jlDjMCIVylX6IOTgycvv/c98a7OUXfW92HxQp+DH0z0cMqlKad7bI7CT4M+LlMtbe2l8lEJ59LRduGkXeq0jW+WL/RpPL171swRfbrEbLofW5eviT7Q3wjfTQk748XsuQHNHvlzhSP0BPI1odcNnKt9bwQOkYPDTkwS+pQCKMGgdoJz3eDEPYMrGyv4rfXsp71bZ0StA4Kx6AiTsAI4rvMboOeZgXxKFT/JVqFr1JEcLsbYXAjvZ1IR85kfu0ziE/GVQJrq4/BI5soN43f0gUX71CFMuAqLXUZfDX90vSDLkJc7LctFKGhBLezJ/WY+Z8m5LO6LGhy/tlCvfhTRI2PDAENu2O1JL7Cfqrqgon9urD8ljYEorPaYUOAnO5O/jUpeL476a6O/JTwCCEHFnj01/B7bJ9ZNKEf8H0SfmqSO8qWMfW4p3M8D06JNLVTYaKcFI3fSLZE5u4W4d8ZFZq6uITYf31F2eCjaCaur6B2xesl9O+DTLqC6ddQ/5QiqQEigCKup3/8vnYQQCSIDnmDTozlFOigfddeOn+zuRcWyZdTx3wZrri83al2A8gUhOFsRE6sU/bu11HESfgWMuqKOUR138PEsPZeG3ZGzikbw5gjb08yxkpezW7i+m1s80JPX61slD/jW9JEXiQt0C9uPy/tlikZmoc7CQzya+DE87F2rspwHzBf/TlMMZakuHJZaTWtgLJ+pV02avUBMyDu1tO5Spb5D17e1OFl4DULUt0WSSdBn3p+udk3+axVNnIz1MKw3zqFYR9H/WgFRUAXZPuCfXJSSmFuC0/UBVxwQ/kBK4b7JXrT4wTYXyHtltW6U8j7siueGlu3t5r/UEayvALgIUF+QJww0de7q5GCNDj8IvvyId50A9ANKjMz0R1Ziqrzp9STGVcJWb9xDiaxuCGkYivxv8o+aDCs/TfITrC5DzpxBvs6V4qjcn3hOQGy1vDBH2Rsxps6pTTDFcJ/gFlMTUSwmhw02gjK77igXf85mURfSQb+KMgQzF7staj+gHm/STVDg2GMFLpboWhSx1s+3S73c0pJZIdJV1RZPiOur5Rq4EbA1oauLKGm5YlmR7m5tQxfLsuj53+f+i0GR0lZcCnSkkyMLxN0/TIDzdaYTVVLmMS10zZ+aHE57ygN4sBufEQ0vk3JRAWCasc8QokSi/SWAyD+o3UuyzmBuWUhvx3JYCF2eallUzHOobXc5eSuAmw2l5MMLiLfzD7AAY3Y4a+pmi2agaqEqtv1FS43GaRwks9IuCZEn8PegOIvY89Kz0wDDYWilBNwv7/oAXsynPcbaYpSO5LuPMo8DryJaMeYGRuNC4jxaQ+AhZhmS5tQ2XNIYXTcj2V9B3ACe0if9i7E5eCZpgP8nvUcdbJKGX2E9iZ1lnacBkLx5tRXbhcDuEsk+P/3fjVZd00FXDw/SE6jW4WPCaJ7V8gOP7HXpRqaGeZzT37rBQjboRQyvKvOBrBgum6LquUyYAZjDgyHGmuWfPOiNrwji0GzJQgOoGfedEDggB1zCI6D+iJ3htoFeSXcLEcIJ1/CtYyLZ9mw9+eRVN5iElArKvbLkCBaOMEJvgbiHs1Hzd+NnNQ52rbMQ3J+PAhTs3A0xP7QhkYAFLJVEIIS1gMvm/EhWHzUyrJKNYBrtetwc4pBkw9w0tWoCI+/rHY0yQmTs21p7zAM6k1wtKp68kyfOhoikROhcoYA45CM+SxMd9cv/ue1a8th3KLTN+6nMKItWvUE+Qb1lcg/fYSiYufiHtemJI5jsvxEfR+eomvjmn2RjTHi8T3Xg0vAOc3BKiDB6UIgkNH8dp9PXTKGRXCblYqfRfypqh6qCvlghgSEQNUuq9ENAg06qD9MA6HxpBJmVZfRschou4Ph9IMlYtFoAkWQuNkZGMCFWgc19hzr4BCslZpKc9EYXMDFjYoaQt2jsHaqust4jJAHZ0c/Q68Id3nUAXnyvf3vMDZIWZj8+XRK2eN6bm10GCJQNxbOOnCuvGcLGwFCBLhkgSBA6Lsv/Rutv/g1zPV7LDGino602c+Sw52nzQ9YlxUZs0ose+FrWWq85iL/VXXq00Arsu6mElInVXjC+DazUUJIllMWkWT23/T1rzo5dH9Yic3qa07Sa+ZxN8FvGFPhhTsSrbSNugOWjUH8gZOh+CIsHaMzaiwsY+dNl/tGIXkcG+df44SJkSLOCZ2Ht3f0/T9gkCYUuT59XpeTnygiX9wOrCChWqxeLWDQAuiJR5KHTZBTxCu0DnqIdm/N4LWYeTCZIw8JeAQLCf/MxV+bY6ERNfHAO244lHSUYowDcG9zlEtZdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 3, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 105000, "_total_timesteps": 120000.0, "seed": null, "action_noise": null, "start_time": 1654464798.7293901, "learning_rate": 0.004, "tensorboard_log": "./dqn_mountain_car_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMINJyYv1/vszuUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMII1CZv8bsEjuUdJRiLg=="}, "_episode_num": 538, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.1250083333333334, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bumpl6JIlMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BupozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuwFxKg7HRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuzH/io86ndX2UKGgGR8BegAAAAAAAaAdLemgIR0Bu1G7nPmgbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu7jXnQpnZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu+aIcinpCdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BvAKZa3ZwodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvGnyqdYnwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BvI8OVgQYldX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BvKdke6qbSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BvQCePJaJRdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BvSTKifxtpdX2UKGgGR8BogAAAAAAAaAdLxGgIR0BvVYgTyrggdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvbPm9xp+MdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bvc1MRHww1dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BvfC3PRiPRdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bvk0JWvKU3dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0Bvn3YSQHRkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BvqMe6qbSadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvwpOWSlnAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bvz+oo/iYLdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bv124XoC+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv8UYCQtBfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv/tXo1UEQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwBZeY2Kl6dX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BwEjCzkZJkdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BwFb6JqIrOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwHGc4HX2/dX2UKGgGR8BnYAAAAAAAaAdLu2gIR0BwJ9fsu3+ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwLrP6be/IdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BwOunbZezEdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BwQIOSW7e3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwRp/EwWWQdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BwUkgKWszVdX2UKGgGR8BowAAAAAAAaAdLxmgIR0BwWLvJA+pwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BwXT+fh/AkdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0BwaFhZyMkydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwbtVNpM6BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwdO1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bwgdkwvg3tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwiBEx7AtWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwlRHmRvFWdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0Bwmzehwl0HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwoVksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwrvIvJzT4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwtSb+cYqHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwwgBnzxwydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwyBXfZVXFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwzpFa0QbudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw20th/iHZdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bw39f7aZhKdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Bw5MUtZmqYdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bw8LvKEFnqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw9zgvUSZjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxA2M3qAz6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxCf7cfvF4dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxDyc5Ke05dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxHIglnh86dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxIqm2sq8UdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BxJ7bO/tY0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxNKrGR3eOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxOruKGcnWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxRdHd43WGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxS/Zh8YygdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxUpQxesxPdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BxXZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxY8D7qIJrdX2UKGgGR8BawAAAAAAAaAdLa2gIR0BxZzfGdZq3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxc2qfe1rqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxeZXq7iAEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxhwQz1scidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxjUppeu3ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxk/E9+w1SdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bxnwy6+WWydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxpV2V3Ux3dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0BxqgeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxtxO0svqUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxvjPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxxUdtEXtTdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bx0GdhAnlXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0Bx1vSqlxffdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bx3DewcHW0dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Bx6M70WdmQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx733QD3dsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx+mPwNLDidX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bx/75mAbyZdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0ByA2Xsw+MZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByEHxJ/XoUdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0ByFUMMI/qxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByG9j+aScLdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0ByIEPpY9xIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLNvZRKpUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByMzUPQOWjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByQTCgsbvPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BySF92HLzPdX2UKGgGR8BhIAAAAAAAaAdLiWgIR0ByTT8CPp6hdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByW5E/jbSJdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0ByX1Mbm2b5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0ByY0QI2OyWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52000, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fd583df28c8>", "add": "<function ReplayBuffer.add at 0x7fd583df2950>", "sample": "<function ReplayBuffer.sample at 0x7fd583df29d8>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd583df2a60>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583ed5080>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583ed50f0>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583ed5160>", "_abc_negative_cache_version": 59}, "replay_buffer_kwargs": {}, "remove_time_limit_termination": false, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -125.8, "std_reward": 49.78513834469078, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-07T21:11:56.790913"}
|