Galeros commited on
Commit
53e8df1
1 Parent(s): 6a732d3

DQN first approach.

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
DQN-mountaincar-first-approach.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01840c642795d7855561cd4aa12fcf68e1e04803dfc29c7bbd0f7c3a8c4b9ac5
3
+ size 1103791
DQN-mountaincar-first-approach/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.3.0
DQN-mountaincar-first-approach/data ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7fd583da16a8>",
8
+ "_build": "<function DQNPolicy._build at 0x7fd583da1730>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd583da17b8>",
10
+ "forward": "<function DQNPolicy.forward at 0x7fd583da1840>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7fd583da18c8>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd583da1950>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd583da19d8>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583da4ba8>",
16
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583da4be0>",
17
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583da4c50>",
18
+ "_abc_negative_cache_version": 59
19
+ },
20
+ "verbose": 0,
21
+ "policy_kwargs": {
22
+ "net_arch": [
23
+ 256,
24
+ 256
25
+ ]
26
+ },
27
+ "observation_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
30
+ "dtype": "float32",
31
+ "shape": [
32
+ 2
33
+ ],
34
+ "low": "[-1.2 -0.07]",
35
+ "high": "[0.6 0.07]",
36
+ "bounded_below": "[ True True]",
37
+ "bounded_above": "[ True True]",
38
+ "_np_random": null
39
+ },
40
+ "action_space": {
41
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
42
+ ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAASmQR/pQed60S31pUbuaT+M5i6SMlTZFfei6QjqHyRzf0LlRgLFh2BQFG1rRgYoujQW8GzA33s2KBlJnd/ffgrYcZHcyX0jRtOF8KLTpT1X+MRumOrOq/byjARja9igtB+iZK0DgIdbPJInWdnsCHhLOqKGYmqNO0J8g4ColXqnFdMK0dpQiBlGgMsxlEuVCgtInmsZG7QwLCEwcVqhDoSu5rZIc6GEhwTCeRIUpMGC2TXUNOAhlnwcipY+TiW3KcV0kVH7YGErrODNp9Mucaht4zvxjR1Ei7D4/qRz1tVkleCNcsGPiSYJ2/C2MAOYIRpKmeAynCAwY2o+ohqSvWKjR7uuo56h2RE4LptQENQbECQtqVC/eyZTwgig3Hvj2lltEvvqE6ZBvUM4xknM+TyfsCohp4YjshlmBBz4XfudamS10aRv09Z41/pcFeoanBLwWFzoEsvvq+6IaBLM07Q5tiUJEykxe98vYuGsrh0wBwAzKEBVZsf4mBd0i8DJc5bDRGsdEppUPpkBAh/dZiUEfm4Kgfu9ZgkOUVv20FBgAqrbnkWQBvpSlDWSdPo0MszI3qg1MAe0ns73Ly9Oz7eOSgjl4gqeEDZ2M90LdFr/yZ2XcCyIkAAPdamSYMC/sGsmAONhO7QPo3JJKfOx771I0cAD+d6Px/bmqvbII3mH9tEl9epeBIPyRl69StSiLNA8KHNAIJUnZGZkWR7GykQWc15uOAyUCBMJISxeGUNpGPJBCZrEYvhO6duBeuxN0ZeW2toMI9foEgqPJk34SqIUx9AViTbNoqn0x6z85vMrqUImlQmglnD2jEzi1u12dIbsaVnHGJjRp/qSo/wQPjdDc2oU7B9b1rMOx1yUOKZldaHDLXWd1HtOgbvd4c0++lHioiFMBisitoB0zw7ct+j1N0zNxYpOpjBBUtLh+nC7ExMSBDwWwy9BTzaM9/zAjQ1LI7HeOZDvejcZDP8F4Ix3pXjxTZHZzoHWCsm9GwcnEEhkXe2nKof4/bNfQKMiDXn/jlDjMCIVylX6IOTgycvv/c98a7OUXfW92HxQp+DH0z0cMqlKad7bI7CT4M+LlMtbe2l8lEJ59LRduGkXeq0jW+WL/RpPL171swRfbrEbLofW5eviT7Q3wjfTQk748XsuQHNHvlzhSP0BPI1odcNnKt9bwQOkYPDTkwS+pQCKMGgdoJz3eDEPYMrGyv4rfXsp71bZ0StA4Kx6AiTsAI4rvMboOeZgXxKFT/JVqFr1JEcLsbYXAjvZ1IR85kfu0ziE/GVQJrq4/BI5soN43f0gUX71CFMuAqLXUZfDX90vSDLkJc7LctFKGhBLezJ/WY+Z8m5LO6LGhy/tlCvfhTRI2PDAENu2O1JL7Cfqrqgon9urD8ljYEorPaYUOAnO5O/jUpeL476a6O/JTwCCEHFnj01/B7bJ9ZNKEf8H0SfmqSO8qWMfW4p3M8D06JNLVTYaKcFI3fSLZE5u4W4d8ZFZq6uITYf31F2eCjaCaur6B2xesl9O+DTLqC6ddQ/5QiqQEigCKup3/8vnYQQCSIDnmDTozlFOigfddeOn+zuRcWyZdTx3wZrri83al2A8gUhOFsRE6sU/bu11HESfgWMuqKOUR138PEsPZeG3ZGzikbw5gjb08yxkpezW7i+m1s80JPX61slD/jW9JEXiQt0C9uPy/tlikZmoc7CQzya+DE87F2rspwHzBf/TlMMZakuHJZaTWtgLJ+pV02avUBMyDu1tO5Spb5D17e1OFl4DULUt0WSSdBn3p+udk3+axVNnIz1MKw3zqFYR9H/WgFRUAXZPuCfXJSSmFuC0/UBVxwQ/kBK4b7JXrT4wTYXyHtltW6U8j7siueGlu3t5r/UEayvALgIUF+QJww0de7q5GCNDj8IvvyId50A9ANKjMz0R1Ziqrzp9STGVcJWb9xDiaxuCGkYivxv8o+aDCs/TfITrC5DzpxBvs6V4qjcn3hOQGy1vDBH2Rsxps6pTTDFcJ/gFlMTUSwmhw02gjK77igXf85mURfSQb+KMgQzF7staj+gHm/STVDg2GMFLpboWhSx1s+3S73c0pJZIdJV1RZPiOur5Rq4EbA1oauLKGm5YlmR7m5tQxfLsuj53+f+i0GR0lZcCnSkkyMLxN0/TIDzdaYTVVLmMS10zZ+aHE57ygN4sBufEQ0vk3JRAWCasc8QokSi/SWAyD+o3UuyzmBuWUhvx3JYCF2eallUzHOobXc5eSuAmw2l5MMLiLfzD7AAY3Y4a+pmi2agaqEqtv1FS43GaRwks9IuCZEn8PegOIvY89Kz0wDDYWilBNwv7/oAXsynPcbaYpSO5LuPMo8DryJaMeYGRuNC4jxaQ+AhZhmS5tQ2XNIYXTcj2V9B3ACe0if9i7E5eCZpgP8nvUcdbJKGX2E9iZ1lnacBkLx5tRXbhcDuEsk+P/3fjVZd00FXDw/SE6jW4WPCaJ7V8gOP7HXpRqaGeZzT37rBQjboRQyvKvOBrBgum6LquUyYAZjDgyHGmuWfPOiNrwji0GzJQgOoGfedEDggB1zCI6D+iJ3htoFeSXcLEcIJ1/CtYyLZ9mw9+eRVN5iElArKvbLkCBaOMEJvgbiHs1Hzd+NnNQ52rbMQ3J+PAhTs3A0xP7QhkYAFLJVEIIS1gMvm/EhWHzUyrJKNYBrtetwc4pBkw9w0tWoCI+/rHY0yQmTs21p7zAM6k1wtKp68kyfOhoikROhcoYA45CM+SxMd9cv/ue1a8th3KLTN+6nMKItWvUE+Qb1lcg/fYSiYufiHtemJI5jsvxEfR+eomvjmn2RjTHi8T3Xg0vAOc3BKiDB6UIgkNH8dp9PXTKGRXCblYqfRfypqh6qCvlghgSEQNUuq9ENAg06qD9MA6HxpBJmVZfRschou4Ph9IMlYtFoAkWQuNkZGMCFWgc19hzr4BCslZpKc9EYXMDFjYoaQt2jsHaqust4jJAHZ0c/Q68Id3nUAXnyvf3vMDZIWZj8+XRK2eN6bm10GCJQNxbOOnCuvGcLGwFCBLhkgSBA6Lsv/Rutv/g1zPV7LDGino602c+Sw52nzQ9YlxUZs0ose+FrWWq85iL/VXXq00Arsu6mElInVXjC+DazUUJIllMWkWT23/T1rzo5dH9Yic3qa07Sa+ZxN8FvGFPhhTsSrbSNugOWjUH8gZOh+CIsHaMzaiwsY+dNl/tGIXkcG+df44SJkSLOCZ2Ht3f0/T9gkCYUuT59XpeTnygiX9wOrCChWqxeLWDQAuiJR5KHTZBTxCu0DnqIdm/N4LWYeTCZIw8JeAQLCf/MxV+bY6ERNfHAO244lHSUYowDcG9zlEtZdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
43
+ "n": 3,
44
+ "shape": [],
45
+ "dtype": "int64",
46
+ "_np_random": "RandomState(MT19937)"
47
+ },
48
+ "n_envs": 1,
49
+ "num_timesteps": 105000,
50
+ "_total_timesteps": 120000.0,
51
+ "seed": null,
52
+ "action_noise": null,
53
+ "start_time": 1654464798.7293901,
54
+ "learning_rate": 0.004,
55
+ "tensorboard_log": "./dqn_mountain_car_tensorboard/",
56
+ "lr_schedule": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "_last_obs": {
61
+ ":type:": "<class 'numpy.ndarray'>",
62
+ ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMINJyYv1/vszuUdJRiLg=="
63
+ },
64
+ "_last_episode_starts": {
65
+ ":type:": "<class 'numpy.ndarray'>",
66
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
67
+ },
68
+ "_last_original_obs": {
69
+ ":type:": "<class 'numpy.ndarray'>",
70
+ ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMII1CZv8bsEjuUdJRiLg=="
71
+ },
72
+ "_episode_num": 538,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": 0.1250083333333334,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bumpl6JIlMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BupozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuwFxKg7HRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuzH/io86ndX2UKGgGR8BegAAAAAAAaAdLemgIR0Bu1G7nPmgbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu7jXnQpnZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu+aIcinpCdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BvAKZa3ZwodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvGnyqdYnwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BvI8OVgQYldX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BvKdke6qbSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BvQCePJaJRdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BvSTKifxtpdX2UKGgGR8BogAAAAAAAaAdLxGgIR0BvVYgTyrggdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvbPm9xp+MdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bvc1MRHww1dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BvfC3PRiPRdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bvk0JWvKU3dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0Bvn3YSQHRkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BvqMe6qbSadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvwpOWSlnAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bvz+oo/iYLdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bv124XoC+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv8UYCQtBfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv/tXo1UEQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwBZeY2Kl6dX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BwEjCzkZJkdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BwFb6JqIrOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwHGc4HX2/dX2UKGgGR8BnYAAAAAAAaAdLu2gIR0BwJ9fsu3+ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwLrP6be/IdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BwOunbZezEdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BwQIOSW7e3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwRp/EwWWQdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BwUkgKWszVdX2UKGgGR8BowAAAAAAAaAdLxmgIR0BwWLvJA+pwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BwXT+fh/AkdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0BwaFhZyMkydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwbtVNpM6BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwdO1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bwgdkwvg3tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwiBEx7AtWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwlRHmRvFWdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0Bwmzehwl0HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwoVksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwrvIvJzT4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwtSb+cYqHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwwgBnzxwydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwyBXfZVXFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwzpFa0QbudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw20th/iHZdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bw39f7aZhKdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Bw5MUtZmqYdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bw8LvKEFnqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw9zgvUSZjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxA2M3qAz6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxCf7cfvF4dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxDyc5Ke05dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxHIglnh86dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxIqm2sq8UdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BxJ7bO/tY0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxNKrGR3eOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxOruKGcnWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxRdHd43WGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxS/Zh8YygdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxUpQxesxPdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BxXZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxY8D7qIJrdX2UKGgGR8BawAAAAAAAaAdLa2gIR0BxZzfGdZq3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxc2qfe1rqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxeZXq7iAEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxhwQz1scidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxjUppeu3ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxk/E9+w1SdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bxnwy6+WWydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxpV2V3Ux3dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0BxqgeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxtxO0svqUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxvjPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxxUdtEXtTdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bx0GdhAnlXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0Bx1vSqlxffdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bx3DewcHW0dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Bx6M70WdmQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx733QD3dsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx+mPwNLDidX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bx/75mAbyZdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0ByA2Xsw+MZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByEHxJ/XoUdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0ByFUMMI/qxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByG9j+aScLdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0ByIEPpY9xIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLNvZRKpUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByMzUPQOWjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByQTCgsbvPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BySF92HLzPdX2UKGgGR8BhIAAAAAAAaAdLiWgIR0ByTT8CPp6hdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByW5E/jbSJdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0ByX1Mbm2b5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0ByY0QI2OyWdWUu"
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 52000,
85
+ "buffer_size": 10000,
86
+ "batch_size": 128,
87
+ "learning_starts": 1000,
88
+ "tau": 1.0,
89
+ "gamma": 0.98,
90
+ "gradient_steps": 8,
91
+ "optimize_memory_usage": false,
92
+ "replay_buffer_class": {
93
+ ":type:": "<class 'abc.ABCMeta'>",
94
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
95
+ "__module__": "stable_baselines3.common.buffers",
96
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
97
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd583df28c8>",
98
+ "add": "<function ReplayBuffer.add at 0x7fd583df2950>",
99
+ "sample": "<function ReplayBuffer.sample at 0x7fd583df29d8>",
100
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd583df2a60>",
101
+ "__abstractmethods__": "frozenset()",
102
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583ed5080>",
103
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583ed50f0>",
104
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583ed5160>",
105
+ "_abc_negative_cache_version": 59
106
+ },
107
+ "replay_buffer_kwargs": {},
108
+ "remove_time_limit_termination": false,
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "actor": null,
114
+ "use_sde_at_warmup": false,
115
+ "exploration_initial_eps": 1.0,
116
+ "exploration_final_eps": 0.07,
117
+ "exploration_fraction": 0.2,
118
+ "target_update_interval": 600,
119
+ "max_grad_norm": 10,
120
+ "exploration_rate": 0.07,
121
+ "exploration_schedule": {
122
+ ":type:": "<class 'function'>",
123
+ ":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
124
+ }
125
+ }
DQN-mountaincar-first-approach/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beb8f3f7caaeb46b3ed5588163e73b193b16897269f299272fd8ee789b897bfa
3
+ size 541953
DQN-mountaincar-first-approach/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af67bcae13c83c8e272d8b72843ba1dbe07a16e6fa41fd133178ac2e6b745f2
3
+ size 542721
DQN-mountaincar-first-approach/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-mountaincar-first-approach/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022
2
+ Python: 3.6.9
3
+ Stable-Baselines3: 1.3.0
4
+ PyTorch: 1.10.2+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.19.5
7
+ Gym: 0.19.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -125.80 +/- 49.79
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fd583da16a8>", "_build": "<function DQNPolicy._build at 0x7fd583da1730>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd583da17b8>", "forward": "<function DQNPolicy.forward at 0x7fd583da1840>", "_predict": "<function DQNPolicy._predict at 0x7fd583da18c8>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd583da1950>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd583da19d8>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583da4ba8>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583da4be0>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583da4c50>", "_abc_negative_cache_version": 59}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVjAEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsChZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgLiUMImpmZvylcj72UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgLiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwKFlGgriUMCAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAASmQR/pQed60S31pUbuaT+M5i6SMlTZFfei6QjqHyRzf0LlRgLFh2BQFG1rRgYoujQW8GzA33s2KBlJnd/ffgrYcZHcyX0jRtOF8KLTpT1X+MRumOrOq/byjARja9igtB+iZK0DgIdbPJInWdnsCHhLOqKGYmqNO0J8g4ColXqnFdMK0dpQiBlGgMsxlEuVCgtInmsZG7QwLCEwcVqhDoSu5rZIc6GEhwTCeRIUpMGC2TXUNOAhlnwcipY+TiW3KcV0kVH7YGErrODNp9Mucaht4zvxjR1Ei7D4/qRz1tVkleCNcsGPiSYJ2/C2MAOYIRpKmeAynCAwY2o+ohqSvWKjR7uuo56h2RE4LptQENQbECQtqVC/eyZTwgig3Hvj2lltEvvqE6ZBvUM4xknM+TyfsCohp4YjshlmBBz4XfudamS10aRv09Z41/pcFeoanBLwWFzoEsvvq+6IaBLM07Q5tiUJEykxe98vYuGsrh0wBwAzKEBVZsf4mBd0i8DJc5bDRGsdEppUPpkBAh/dZiUEfm4Kgfu9ZgkOUVv20FBgAqrbnkWQBvpSlDWSdPo0MszI3qg1MAe0ns73Ly9Oz7eOSgjl4gqeEDZ2M90LdFr/yZ2XcCyIkAAPdamSYMC/sGsmAONhO7QPo3JJKfOx771I0cAD+d6Px/bmqvbII3mH9tEl9epeBIPyRl69StSiLNA8KHNAIJUnZGZkWR7GykQWc15uOAyUCBMJISxeGUNpGPJBCZrEYvhO6duBeuxN0ZeW2toMI9foEgqPJk34SqIUx9AViTbNoqn0x6z85vMrqUImlQmglnD2jEzi1u12dIbsaVnHGJjRp/qSo/wQPjdDc2oU7B9b1rMOx1yUOKZldaHDLXWd1HtOgbvd4c0++lHioiFMBisitoB0zw7ct+j1N0zNxYpOpjBBUtLh+nC7ExMSBDwWwy9BTzaM9/zAjQ1LI7HeOZDvejcZDP8F4Ix3pXjxTZHZzoHWCsm9GwcnEEhkXe2nKof4/bNfQKMiDXn/jlDjMCIVylX6IOTgycvv/c98a7OUXfW92HxQp+DH0z0cMqlKad7bI7CT4M+LlMtbe2l8lEJ59LRduGkXeq0jW+WL/RpPL171swRfbrEbLofW5eviT7Q3wjfTQk748XsuQHNHvlzhSP0BPI1odcNnKt9bwQOkYPDTkwS+pQCKMGgdoJz3eDEPYMrGyv4rfXsp71bZ0StA4Kx6AiTsAI4rvMboOeZgXxKFT/JVqFr1JEcLsbYXAjvZ1IR85kfu0ziE/GVQJrq4/BI5soN43f0gUX71CFMuAqLXUZfDX90vSDLkJc7LctFKGhBLezJ/WY+Z8m5LO6LGhy/tlCvfhTRI2PDAENu2O1JL7Cfqrqgon9urD8ljYEorPaYUOAnO5O/jUpeL476a6O/JTwCCEHFnj01/B7bJ9ZNKEf8H0SfmqSO8qWMfW4p3M8D06JNLVTYaKcFI3fSLZE5u4W4d8ZFZq6uITYf31F2eCjaCaur6B2xesl9O+DTLqC6ddQ/5QiqQEigCKup3/8vnYQQCSIDnmDTozlFOigfddeOn+zuRcWyZdTx3wZrri83al2A8gUhOFsRE6sU/bu11HESfgWMuqKOUR138PEsPZeG3ZGzikbw5gjb08yxkpezW7i+m1s80JPX61slD/jW9JEXiQt0C9uPy/tlikZmoc7CQzya+DE87F2rspwHzBf/TlMMZakuHJZaTWtgLJ+pV02avUBMyDu1tO5Spb5D17e1OFl4DULUt0WSSdBn3p+udk3+axVNnIz1MKw3zqFYR9H/WgFRUAXZPuCfXJSSmFuC0/UBVxwQ/kBK4b7JXrT4wTYXyHtltW6U8j7siueGlu3t5r/UEayvALgIUF+QJww0de7q5GCNDj8IvvyId50A9ANKjMz0R1Ziqrzp9STGVcJWb9xDiaxuCGkYivxv8o+aDCs/TfITrC5DzpxBvs6V4qjcn3hOQGy1vDBH2Rsxps6pTTDFcJ/gFlMTUSwmhw02gjK77igXf85mURfSQb+KMgQzF7staj+gHm/STVDg2GMFLpboWhSx1s+3S73c0pJZIdJV1RZPiOur5Rq4EbA1oauLKGm5YlmR7m5tQxfLsuj53+f+i0GR0lZcCnSkkyMLxN0/TIDzdaYTVVLmMS10zZ+aHE57ygN4sBufEQ0vk3JRAWCasc8QokSi/SWAyD+o3UuyzmBuWUhvx3JYCF2eallUzHOobXc5eSuAmw2l5MMLiLfzD7AAY3Y4a+pmi2agaqEqtv1FS43GaRwks9IuCZEn8PegOIvY89Kz0wDDYWilBNwv7/oAXsynPcbaYpSO5LuPMo8DryJaMeYGRuNC4jxaQ+AhZhmS5tQ2XNIYXTcj2V9B3ACe0if9i7E5eCZpgP8nvUcdbJKGX2E9iZ1lnacBkLx5tRXbhcDuEsk+P/3fjVZd00FXDw/SE6jW4WPCaJ7V8gOP7HXpRqaGeZzT37rBQjboRQyvKvOBrBgum6LquUyYAZjDgyHGmuWfPOiNrwji0GzJQgOoGfedEDggB1zCI6D+iJ3htoFeSXcLEcIJ1/CtYyLZ9mw9+eRVN5iElArKvbLkCBaOMEJvgbiHs1Hzd+NnNQ52rbMQ3J+PAhTs3A0xP7QhkYAFLJVEIIS1gMvm/EhWHzUyrJKNYBrtetwc4pBkw9w0tWoCI+/rHY0yQmTs21p7zAM6k1wtKp68kyfOhoikROhcoYA45CM+SxMd9cv/ue1a8th3KLTN+6nMKItWvUE+Qb1lcg/fYSiYufiHtemJI5jsvxEfR+eomvjmn2RjTHi8T3Xg0vAOc3BKiDB6UIgkNH8dp9PXTKGRXCblYqfRfypqh6qCvlghgSEQNUuq9ENAg06qD9MA6HxpBJmVZfRschou4Ph9IMlYtFoAkWQuNkZGMCFWgc19hzr4BCslZpKc9EYXMDFjYoaQt2jsHaqust4jJAHZ0c/Q68Id3nUAXnyvf3vMDZIWZj8+XRK2eN6bm10GCJQNxbOOnCuvGcLGwFCBLhkgSBA6Lsv/Rutv/g1zPV7LDGino602c+Sw52nzQ9YlxUZs0ose+FrWWq85iL/VXXq00Arsu6mElInVXjC+DazUUJIllMWkWT23/T1rzo5dH9Yic3qa07Sa+ZxN8FvGFPhhTsSrbSNugOWjUH8gZOh+CIsHaMzaiwsY+dNl/tGIXkcG+df44SJkSLOCZ2Ht3f0/T9gkCYUuT59XpeTnygiX9wOrCChWqxeLWDQAuiJR5KHTZBTxCu0DnqIdm/N4LWYeTCZIw8JeAQLCf/MxV+bY6ERNfHAO244lHSUYowDcG9zlEtZdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 3, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 105000, "_total_timesteps": 120000.0, "seed": null, "action_noise": null, "start_time": 1654464798.7293901, "learning_rate": 0.004, "tensorboard_log": "./dqn_mountain_car_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/cGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMINJyYv1/vszuUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMII1CZv8bsEjuUdJRiLg=="}, "_episode_num": 538, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.1250083333333334, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bumpl6JIlMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BupozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuwFxKg7HRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BuzH/io86ndX2UKGgGR8BegAAAAAAAaAdLemgIR0Bu1G7nPmgbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu7jXnQpnZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bu+aIcinpCdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BvAKZa3ZwodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvGnyqdYnwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BvI8OVgQYldX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BvKdke6qbSdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BvQCePJaJRdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BvSTKifxtpdX2UKGgGR8BogAAAAAAAaAdLxGgIR0BvVYgTyrggdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvbPm9xp+MdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0Bvc1MRHww1dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BvfC3PRiPRdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bvk0JWvKU3dX2UKGgGR8BnAAAAAAAAaAdLuGgIR0Bvn3YSQHRkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BvqMe6qbSadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BvwpOWSlnAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bvz+oo/iYLdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bv124XoC+2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv8UYCQtBfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bv/tXo1UEQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwBZeY2Kl6dX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BwEjCzkZJkdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BwFb6JqIrOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwHGc4HX2/dX2UKGgGR8BnYAAAAAAAaAdLu2gIR0BwJ9fsu3+ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwLrP6be/IdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BwOunbZezEdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BwQIOSW7e3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwRp/EwWWQdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BwUkgKWszVdX2UKGgGR8BowAAAAAAAaAdLxmgIR0BwWLvJA+pwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BwXT+fh/AkdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0BwaFhZyMkydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwbtVNpM6BdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwdO1pj+aSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bwgdkwvg3tdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwiBEx7AtWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwlRHmRvFWdX2UKGgGR8BnoAAAAAAAaAdLvWgIR0Bwmzehwl0HdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwoVksjFAFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwrvIvJzT4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwtSb+cYqHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwwgBnzxwydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwyBXfZVXFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BwzpFa0QbudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw20th/iHZdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bw39f7aZhKdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0Bw5MUtZmqYdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0Bw8LvKEFnqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bw9zgvUSZjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxA2M3qAz6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxCf7cfvF4dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BxDyc5Ke05dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxHIglnh86dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxIqm2sq8UdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BxJ7bO/tY0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxNKrGR3eOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxOruKGcnWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxRdHd43WGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxS/Zh8YygdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxUpQxesxPdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BxXZSJj2BbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxY8D7qIJrdX2UKGgGR8BawAAAAAAAaAdLa2gIR0BxZzfGdZq3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxc2qfe1rqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxeZXq7iAEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxhwQz1scidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxjUppeu3ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxk/E9+w1SdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bxnwy6+WWydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxpV2V3Ux3dX2UKGgGR8BhAAAAAAAAaAdLiGgIR0BxqgeT3Zf2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxtxO0svqUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxvjPt2LYPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxxUdtEXtTdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bx0GdhAnlXdX2UKGgGR8BmoAAAAAAAaAdLtWgIR0Bx1vSqlxffdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bx3DewcHW0dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Bx6M70WdmQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx733QD3dsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bx+mPwNLDidX2UKGgGR8BjQAAAAAAAaAdLmmgIR0Bx/75mAbyZdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0ByA2Xsw+MZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByEHxJ/XoUdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0ByFUMMI/qxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByG9j+aScLdX2UKGgGR8BfAAAAAAAAaAdLfGgIR0ByIEPpY9xIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLNvZRKpUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByMzUPQOWjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByQTCgsbvPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BySF92HLzPdX2UKGgGR8BhIAAAAAAAaAdLiWgIR0ByTT8CPp6hdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByW5E/jbSJdX2UKGgGR8BfgAAAAAAAaAdLfmgIR0ByX1Mbm2b5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0ByY0QI2OyWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 52000, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fd583df28c8>", "add": "<function ReplayBuffer.add at 0x7fd583df2950>", "sample": "<function ReplayBuffer.sample at 0x7fd583df29d8>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd583df2a60>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7fd583ed5080>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7fd583ed50f0>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fd583ed5160>", "_abc_negative_cache_version": 59}, "replay_buffer_kwargs": {}, "remove_time_limit_termination": false, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVqQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS25DBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMay9ob21lL2FnYXJjaWEvcmVwb3MvZGVlcC1ybC1jbGFzcy91bml0MS91bml0MS9saWIvcHl0aG9uMy42L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB4pUpRoHilSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgkfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoMHWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+x64UeuFHshZRSlGg4Rz/JmZmZmZmahZRSlGg4Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -125.8, "std_reward": 49.78513834469078, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-07T21:11:56.790913"}