agarcia commited on
Commit
d7efe22
1 Parent(s): 63562d0

PPO with 3e6 iterations

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 240.74 +/- 25.83
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 276.68 +/- 23.99
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5572e5710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5572e57a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5572e5830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5572e58c0>", "_build": "<function ActorCriticPolicy._build at 0x7ff5572e5950>", "forward": "<function ActorCriticPolicy.forward at 0x7ff5572e59e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5572e5a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff5572e5b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5572e5b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5572e5c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5572e5cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff5573365d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652122932.8785794, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJowEz32jEm6RqImuKKWBLNFc6Y6ZnFBNwAAgD8AAIA/zUBLvMPpUbpwo1O78zqRNjBw4TmZGDc6AACAPwAAgD9mN8299rhBuo6CRLg3/3k0dhABu/OKXjcAAIA/AACAP7PyZD53J/E+VoBfvtwMUL650QQ+IAT7vAAAAAAAAAAA5uJeveE0gLoXIY67hlNmNqoRwLpcAaQ6AACAPwAAgD8Ayam84UKjOUwsyDtzcfQ35iuxu2at1bQAAIA/AACAPwAj6rwfXam5BwHCuTP6IDZg6mY7o1PhOAAAgD8AAIA/wIgavnESW7vXeYy80U0Lukh4kjxtwu06AACAPwAAgD8aRwE+GmKHPnWIY77Eao2+VPLCPZ7X070AAAAAAAAAAOZggL1cI2G6QpkXuabab7Sv2NE6IsYtOAAAgD8AAIA/5nQJvY+CS7gutRs5oZmNNNoI4DvZAzm4AACAPwAAgD+aI/A9nJ2hPzazmz7u2/q+Rm83Pp3KdL0AAAAAAAAAAABeajzsCcW5MIvbuv4LCLbYGkU6Dq0BOgAAgD8AAIA/TYO4vY/mSroPT5C5ST8xtLzFtrrWw6U4AACAPwAAgD8mddy9e7SCuMYpVLtZ8Ic4QIZfu9IHtTkAAIA/AACAP/qmOT4KN1c834i6vXiKBbyqJe496BsCvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImrM+5ZgYYECUhpRSlIwBbJRN6AOMAXSUR0B4vBTMqz7edX2UKGgGaAloD0MIt0QuOAO9YUCUhpRSlGgVTegDaBZHQHjVxJul41R1fZQoaAZoCWgPQwhhU+dR8TBTQJSGlFKUaBVLjWgWR0B41vPgNwzddX2UKGgGaAloD0MIxD9s6dFhZUCUhpRSlGgVTegDaBZHQHkoEJa7mMh1fZQoaAZoCWgPQwicNA2KZuxgQJSGlFKUaBVN6ANoFkdAeTfJkGzKLnV9lChoBmgJaA9DCGu5MxMM2UxAlIaUUpRoFUuCaBZHQHk8IznA6+51fZQoaAZoCWgPQwii7gOQ2ixBQJSGlFKUaBVLuWgWR0B5STQb+98JdX2UKGgGaAloD0MIBitOtRbRXUCUhpRSlGgVTegDaBZHQHlKU3juKGd1fZQoaAZoCWgPQwjXwiy08+xjQJSGlFKUaBVN6ANoFkdAeVIRRdhRZXV9lChoBmgJaA9DCL6h8Nk6oV9AlIaUUpRoFU3oA2gWR0B5W4CYCyQgdX2UKGgGaAloD0MIuK0tPK9CYECUhpRSlGgVTegDaBZHQHldGus90Rx1fZQoaAZoCWgPQwgbZmg8EQViQJSGlFKUaBVN6ANoFkdAeXUU8V58jXV9lChoBmgJaA9DCLVU3o7wgWVAlIaUUpRoFU3oA2gWR0B5eXe+Eh7mdX2UKGgGaAloD0MIRdeFHxw7ZUCUhpRSlGgVTegDaBZHQHl8Q5zYEnt1fZQoaAZoCWgPQwgOEMzR438iwJSGlFKUaBVLt2gWR0B5mq7oSteVdX2UKGgGaAloD0MIIqev52u3YkCUhpRSlGgVTegDaBZHQHmuyq6vq1R1fZQoaAZoCWgPQwijAbwFEgFpQJSGlFKUaBVN6ANoFkdAea/ryUcGT3V9lChoBmgJaA9DCEMB28EItWRAlIaUUpRoFU3oA2gWR0B5zR4yGi5/dX2UKGgGaAloD0MI3o5wWvDjXECUhpRSlGgVTegDaBZHQHnZ/IfbKzR1fZQoaAZoCWgPQwgKSzygbCJjQJSGlFKUaBVN6ANoFkdAeeJL3sXzlXV9lChoBmgJaA9DCKgbKPBOA2FAlIaUUpRoFU3oA2gWR0B6Buq814xDdX2UKGgGaAloD0MIkEqxo/GVYECUhpRSlGgVTegDaBZHQHpkZi7TUiJ1fZQoaAZoCWgPQwgLmwEuyG5eQJSGlFKUaBVN6ANoFkdAemm0Bfa6BnV9lChoBmgJaA9DCOo/a378ZGJAlIaUUpRoFU3oA2gWR0B6eRGFzuF6dX2UKGgGaAloD0MI/TIYIxJPZUCUhpRSlGgVTegDaBZHQHp6SNfgJkZ1fZQoaAZoCWgPQwicacL2E7dhQJSGlFKUaBVN6ANoFkdAeoKr0aqCH3V9lChoBmgJaA9DCNTX8zVLAWdAlIaUUpRoFU2yAmgWR0B6ipRk3CKrdX2UKGgGaAloD0MIKPIk6RpVY0CUhpRSlGgVTegDaBZHQHqMTJlrdnF1fZQoaAZoCWgPQwh2xYzwdg9jQJSGlFKUaBVN6ANoFkdAeo3TWGyooHV9lChoBmgJaA9DCH4AUps4FUpAlIaUUpRoFUu3aBZHQHqTO+AVfu11fZQoaAZoCWgPQwjMY83IIPVKQJSGlFKUaBVLo2gWR0B6mwkka/ATdX2UKGgGaAloD0MIwvf+Bu3GUUCUhpRSlGgVS5FoFkdAeqd3NcGC7XV9lChoBmgJaA9DCD6zJEDNKmNAlIaUUpRoFU3oA2gWR0B6p66bvw3HdX2UKGgGaAloD0MIcxO1NDf7YUCUhpRSlGgVTegDaBZHQHqqUidJ8OV1fZQoaAZoCWgPQwi/J9ap8gtPQJSGlFKUaBVLuGgWR0B6z/DR+jM3dX2UKGgGaAloD0MIaf0tAfi3RkCUhpRSlGgVS8VoFkdAetcmoR7JGXV9lChoBmgJaA9DCAyyZfk6YmNAlIaUUpRoFU3oA2gWR0B64awGGEf1dX2UKGgGaAloD0MIpUkp6HbgYECUhpRSlGgVTegDaBZHQHri8AJb+tN1fZQoaAZoCWgPQwgG2EenruwjwJSGlFKUaBVLrWgWR0B6+0PiDM/ydX2UKGgGaAloD0MI6ZleYizWYUCUhpRSlGgVTegDaBZHQHsCDuOS4e91fZQoaAZoCWgPQwguOe6UjttgQJSGlFKUaBVN6ANoFkdAew9fbKzRhXV9lChoBmgJaA9DCP1P/u4dUl9AlIaUUpRoFU3oA2gWR0B7F7KFIuoQdX2UKGgGaAloD0MIFw6EZAE7MkCUhpRSlGgVS5loFkdAezUD/lyR0XV9lChoBmgJaA9DCCEdHsJ4D2JAlIaUUpRoFU3oA2gWR0B7PUc5sCT2dX2UKGgGaAloD0MIcov5uaGGXUCUhpRSlGgVTegDaBZHQHubDK9wm3R1fZQoaAZoCWgPQwhxAP2+f05eQJSGlFKUaBVN6ANoFkdAe7GDGcWj5HV9lChoBmgJaA9DCDIge737NGJAlIaUUpRoFU3oA2gWR0B7ust6HCXQdX2UKGgGaAloD0MIKJmc2hmBXkCUhpRSlGgVTegDaBZHQHvF3B+F10V1fZQoaAZoCWgPQwgSEmkb/2xkQJSGlFKUaBVN6ANoFkdAe8ftOmBOHnV9lChoBmgJaA9DCPZE14WfUmNAlIaUUpRoFU3oA2gWR0B7zn9LpRoAdX2UKGgGaAloD0MIDM7g7xebTUCUhpRSlGgVS5poFkdAe9ao11nuiXV9lChoBmgJaA9DCFtc4zPZy11AlIaUUpRoFU3oA2gWR0B715BzFMqSdX2UKGgGaAloD0MIZqAy/n0mNUCUhpRSlGgVS6JoFkdAe+BzErGzbHV9lChoBmgJaA9DCFxWYTNADGJAlIaUUpRoFU3oA2gWR0B75N7fHggpdX2UKGgGaAloD0MIeXWOAdmzMUCUhpRSlGgVS65oFkdAfAYT1kDp1XV9lChoBmgJaA9DCFQ57Sm5o2BAlIaUUpRoFU3oA2gWR0B8FBBE8aGYdX2UKGgGaAloD0MI9S1zuiyVZECUhpRSlGgVTegDaBZHQHwdw8OkLx91fZQoaAZoCWgPQwhOXmQC/sdhQJSGlFKUaBVN6ANoFkdAfB7ogmqo63V9lChoBmgJaA9DCFETfT7KKWNAlIaUUpRoFU3oA2gWR0B8NdZMcp9adX2UKGgGaAloD0MIn6wYrg6IWECUhpRSlGgVTegDaBZHQHw8L8R+SbJ1fZQoaAZoCWgPQwi8H7dfPhZcQJSGlFKUaBVN6ANoFkdAfFASbpeNUHV9lChoBmgJaA9DCONTAIxnQ2ZAlIaUUpRoFU3oA2gWR0B8a/nA6+36dX2UKGgGaAloD0MIXU90XXhDZUCUhpRSlGgVTegDaBZHQHxzXCoCMgl1fZQoaAZoCWgPQwiCxkyiXj9oQJSGlFKUaBVN6ANoFkdAfM8lum78N3V9lChoBmgJaA9DCHIZNzXQbmRAlIaUUpRoFU3oA2gWR0B8+MTFl05mdX2UKGgGaAloD0MIPWL03EKXW0CUhpRSlGgVTegDaBZHQHz6wXl8w6B1fZQoaAZoCWgPQwhGXAAaJQxlQJSGlFKUaBVN6ANoFkdAfQGcCo0hvHV9lChoBmgJaA9DCEM8Ei/PPmJAlIaUUpRoFU3oA2gWR0B9CfS7Xg+AdX2UKGgGaAloD0MIsffii3aPZECUhpRSlGgVTegDaBZHQH0Kz3M6ikB1fZQoaAZoCWgPQwjWdD3RdaxjQJSGlFKUaBVN6ANoFkdAfRc+Sr5qM3V9lChoBmgJaA9DCCyBlNi17mNAlIaUUpRoFU3oA2gWR0B9N2fywwCbdX2UKGgGaAloD0MIF4OHad+KT0CUhpRSlGgVS7ZoFkdAfT4NutOmBXV9lChoBmgJaA9DCAr2X+emdGNAlIaUUpRoFU3oA2gWR0B9RI+gUUO/dX2UKGgGaAloD0MIEr2MYrlJZ0CUhpRSlGgVTegDaBZHQH1Nw2l2vB91fZQoaAZoCWgPQwguxsA6DtFjQJSGlFKUaBVN6ANoFkdAfU7RVIZqEnV9lChoBmgJaA9DCDaQLjatK19AlIaUUpRoFU3oA2gWR0B9Yr79AHE/dX2UKGgGaAloD0MIVYfcDDdVYkCUhpRSlGgVTegDaBZHQH1oYCIUJv51fZQoaAZoCWgPQwjoM6DeDGdkQJSGlFKUaBVN6ANoFkdAfXsqKxcE/3V9lChoBmgJaA9DCFZ9rrbidGhAlIaUUpRoFU3oA2gWR0B9lkYGdI5HdX2UKGgGaAloD0MITBdi9UebZUCUhpRSlGgVTegDaBZHQH2dnSF49ox1fZQoaAZoCWgPQwg9RQ4RN4NoQJSGlFKUaBVN6ANoFkdAfa8WWyC4BnV9lChoBmgJaA9DCHQmbaru1UdAlIaUUpRoFUuRaBZHQH4C0gjhUBJ1fZQoaAZoCWgPQwgXSbvRR8dhQJSGlFKUaBVN6ANoFkdAfiFLJSzgM3V9lChoBmgJaA9DCO1I9Z3f+mRAlIaUUpRoFU3oA2gWR0B+Iy3z+WGAdX2UKGgGaAloD0MIeGLWi6EZYkCUhpRSlGgVTegDaBZHQH4qT2i+L3t1fZQoaAZoCWgPQwhMpgpGJbdCQJSGlFKUaBVLpmgWR0B+KuM98qnWdX2UKGgGaAloD0MIZyYYzjXMXkCUhpRSlGgVTegDaBZHQH4ybU1AJLN1fZQoaAZoCWgPQwgyqgzjbiZiQJSGlFKUaBVN6ANoFkdAfjNf9xZMc3V9lChoBmgJaA9DCPxwkBDlz1VAlIaUUpRoFUuuaBZHQH5H+1KGtZF1fZQoaAZoCWgPQwhVNNb+zvNiQJSGlFKUaBVN6ANoFkdAfmAbEP1+RnV9lChoBmgJaA9DCNF4IohzJ2NAlIaUUpRoFU3oA2gWR0B+ZneMyad+dX2UKGgGaAloD0MIB7MJMCwWZkCUhpRSlGgVTegDaBZHQH5s/Nu+AVh1fZQoaAZoCWgPQwgVAU7v4hpjQJSGlFKUaBVN6ANoFkdAfnW8/lhgE3V9lChoBmgJaA9DCEq4kEdw2lhAlIaUUpRoFU3oA2gWR0B+dtprULDydX2UKGgGaAloD0MI0xOWeECgYECUhpRSlGgVTegDaBZHQH6MVXV9Wp91fZQoaAZoCWgPQwi1+X/VkedfQJSGlFKUaBVN6ANoFkdAfpItKZlWfnV9lChoBmgJaA9DCHxD4bP1BWNAlIaUUpRoFU3oA2gWR0B+pTLTx5LRdX2UKGgGaAloD0MIqyaIug+KT0CUhpRSlGgVS71oFkdAfrywqRU3oHV9lChoBmgJaA9DCHcSEf5F/mZAlIaUUpRoFU3oA2gWR0B+yRqSHM2WdX2UKGgGaAloD0MIP8Vx4NWDYECUhpRSlGgVTegDaBZHQH7b59JBgNR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee74909ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee74909f28>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7490f048>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7490f0d0>", "_build": "<function ActorCriticPolicy._build at 0x7fee7490f158>", "forward": "<function ActorCriticPolicy.forward at 0x7fee7490f1e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7490f268>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee7490f2f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7490f378>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7490f400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7490f488>", "__abstractmethods__": "frozenset()", "_abc_registry": "<_weakrefset.WeakSet object at 0x7fee74908240>", "_abc_cache": "<_weakrefset.WeakSet object at 0x7fee74908278>", "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fee749082b0>", "_abc_negative_cache_version": 59}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVVwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgLiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgLiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgriUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoO4wFc3RhdGWUfZQojANrZXmUaBNoFUsAhZRoF4eUUpQoSwFNcAKFlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYolCwAkAAPV6Ti82uAiW6HKF9atJ6/FvoQGpQLXLqt3hd66S1u+y1Egy06FDKJl9CeyHUHkiuSLg1O8LKL6ISqtcDk7AC8AFdximlu+/iQWNAIkmTezZtA4fg6iW9gdjRytcRkCHXyyWXiYqmwMiR/zB1Rs6Gb4x65rriNDPbup1YHdXi64U3InlaSAuSyaHgpLbfaKWesyXBk3y2/aP5u6rRmLMYqMuX5+D5xx0QN1/cOZNlMRhtO6h5iLI+TTeAIi45D8j//DbV32nz86agYGJz/4gTpPfXt1T8al45zMyyGhKuxPNsVOY+5WY8xm3AFgBsXJJjKY6zcaNy5XdKvV8/UQmMzisKYtd5I7yzdrwUS4oEUyez1AzfQjCSRDpaBVw/4MNsUH+28eRC0vwUm+89GPSb0467tICAaFmId7aUC4zYZesS9yJu1wn2ZMLuEWrdaUgXcZahE/WEMEd9N847padfSLu6nJmDLhRPsPj05oZMWg/sZSFVZIQtjH8R4QWQHwJtPxz1c7SPUwKr/mlvVI7UT6RZHjK6p+XMDyim886lSH92MaUrI+h5+FNr2ue5qAhIk+/nH6Ek5p+ZH45KsUTB/ERHbpOd4LWK88o0NbOWMP9ws7VxHdHSBUTb9pMtPYC7UdF6YPtnfrAL6OrqFmZVIHVgjU7Ph8F/as84D0UxHUeMOkrB0nBQMsqdzmQwbBQGr2dKBFN+jTJBuEcPlXW5iHwnBqHVxeds5ZJmgetwh3RIZNYi+dZUGOAAMj4FEfMK8+VgYNSseIcR3Zll7I6roohDve7d1WlN3jtUQcHsR5+IfB7HHQxVS8tMlCbrgOKZRep3ZbiMkc19Egrs8pQlhC11pMiwbHAUGK345bp1rOu0r/Se/bp6tcZcjZMn8EnPzXIXUMSFrlOtCuAReMA1pTZ+cCgU+BGSeLaHnpvrypMGCNeL38mMYIHNxG+JYwDiqmysEURsfkvWlrTfi+AfTFh80h4e0YcuBubjYvbt5m+RipmRGf61hJxypext0rtcHZuP2rAzA6jI6H7hQxSBa7nKGXOQ742JxCkah16ZTH7yAxvONeCRgALCcoa4MkUmH8cfZtEXm99XL6922RzgIEfyLZDeFK01ZVHj5gyitwo3TbB1ZxdWRjD7G1QxWp7n3MRzDlt0NUMHX5sHjbZcsY9Kwte7L1lMP4JK/mHgjhdfeQSdbaXotNSCDc2x6wmH865s/rlSDM4A2UoBwxbASICZySSBRXRHAXXzu403baHzFkVqyusdz5t4JLTUOGf21wgpMMxQdolA/wzvGlrXU/ayQFwVczo5e1XSizcZHt2mrY6F/17eIcqVeZHHAz800DCWxvo2E6hlkrOipd8JhoO2dhqo97dTLLvDN5gbqqCLe4SRNAz0++NYDpMohTcmIJOd7l8o0mvkZZ9TlApPR4c279SAYwYtlqBm9MeQJElyBviiG4ZIRulh64z8pmvtKazrvXFbigt2qdL9Pmx+ngBrY0zWS4n2QXoZ07I/AyCXir69CdCZjHWLRT+p30f2No45RDDQntT9xPMdLhZd815n3CVcMoU0kC3kmVeIpLKRr3jjhuO5/BIAF856xS+U765Co6EQ01wehngPUtOoLhXgZfl4pEJZf1ykma/z8cNsYSL6U724mn2yJeV3NChRSDZ9lgQYO60qjGMFQGnxMBbt0mKuU4vBWixl483l0DsQKd0a/2jPkhW7RodX/s25TOxj/Ai2n+gwzVV8BeqLgrPDjK213pP4EFzrMm45Qk/1IfZoioMyF3d6mYVT+03gWtAUAjwtI/LqXeV7huBxdZlUuzuQbW1+nh/NYQ6Vofz6jAmYTz5o1nZUU+yeBTQP7UXDGu/Xuyn6Jtr/lPwGeI5687PgzNG5BdoV6t2arCvBdtsokmyrX+v+F2dAZ3mqRRLthKK206b9pPnC9WSQG+OboynIvXWhFHkGojIFpf5o2ur1fKtQSrCn963ynkTW/XpuNaOMgGYrGSRoLoAEQEaav+0nyU1P3E8UnFg5IJRwi6tcdmYmY3btLKeNZyL2Dv74pZulJUcvwLaBj90/9ow/bF30l4B/iTpBQC6Aupm1tRn2Ad0qiFSnEYgOyDP0TexAOF2uj+ftKDFo7v8omOOy2fy+rwBTwD5xZUOplIUk2dz015+ZG6lNcjytaSlNoyh5yTboFf4soKMAswyzeqhYRBW/HeqSHNekR9dilRl31YUbr4XK7ejlyAcXCcq1aHfG0rNlx9RLbqmxr9ZclbkSWETEsMi6z9YduWet5o1+MAgSDxdiEziB0VXTXhTVYuwBoGEMT7Vir9rfoh4uQrCu9rp+HSbVQtKIXYPR0V5XjhLUW5dxu9A4Afh4B6WfhH7auxRcxwLQn64ov7ndt/Tz1KkQAOokK0RNzEBgREpy2PmxlhUrJwhzMVxWtLYjRdQfv9pxTwAJ1i9uJso/HuTh3zoTThGiUV6eWhUVtMw9ja8usl18wFj/pUppFT2rBF3y+yxomYmeWKya/87C52hA5HZz2nv7kRBuk9rh/pVa0+GmWKSiq5HIlGDPl45J4BgQAGDB6M7JM9i8LAI6d2W0bU5qwaP9mhseIenpM4qPOBc96aZcFA6+ntcMlbY+wON6K0bHbHH8Gr2LlyTrmKuYuVBbyDooGttSBFUw6UtSnQ6azlVlmG++cy0qGnBw2F+ajJTpZAFpOOFH/TDRAL3B6Awf96mZVZCXscbfQ1D3HKwwbDYF93tLNuO8Atj0UnEe8nrNXKumeB2KtifHoG+hLYHOBhLn+68QfbG/dsR4G6KVpfR/YpgjUR6Cc8aZ2tBZzEfCg4UK3rc+YMfXZEG9p93AahoQSgySMi3r2BsrN9YIH+7XHPlPdePkfTrJUV+TD0Zzq+ZaiFlyWvyJdtkmx1cFj9gPSBkd4mGV7RF0yV8BWKldEXUJz/pvv3vi/B5QsZuOQBLKjZ8tYkmObbYrgBAhGwq2O9pEWMszcI+EWqxNdbMXXOOsqVJdiPF6bTalcczoe79Tu9Ktv3D8oahk97/UTjC7WA1LRewKaguyAPXk+YlOEvidOxu2AexwUWb5fd95jYzoqH27PwSlCxSSWrf2go0aaCrsAKm4gfat6vr9/KankN+8XjxegeYG8jwTkCDlXns5Rzi48+YOC0DTk5HcrjRmk6NFSVfaI7GxK2hzmZOdSsRvykn1zm6GvAD7Mt5VACATQD8tPfSTu3/t7vDVjraAF6psf/P644g3HsSyKolWJ2w0nM31J76/myWWnTl+sp/FCzCjTuFcsHlGroCN6CYJdzAmzV0tkGe0qwUKx2+fHvkrbSckjyvL5R0lGKMA3Bvc5RLEHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAA4ZGWsoU2ukl3uz3+xAPAuLabmXnx/BDsasIgP6ftX8mpvMXO//wsE19SfLu1U4XRSteF4OLvxR2L/8Zsyo6cZmwjFgPBe7n1iQxgbcZc1ou2Wc2YfFZnY3DK7EpOAN1eToU3h+/ZS2WOHUAcl0K2S9bp5rRZMz9qTE6Cld+qsH2n3/A9LrzFrVbO/xmjnFsIIFLdTld/HFdhl5McCqAHLdU837H9hd3rrXpkITbhJsIy0dHGUkCqnO8hNVBjo5bEv6qb6ktBZdqdhKNNHv9YSzjaZd2xR06F8nXBiXltqLOFBjXsKp6E2tFA16d7uhqqLOLegEOlmEMd36Fl6KR7tVyjxl8aih1kFzzwFoYlil9H0Vxpqg5PpBZ7/cG/z08/RdE9sw7gD/pg3jtWu4Bu4JqP0aXwOuVh3d630AzxhHVxe1Sm0LmTx83d2t7/VHZEO1ZUTbsUHYIEs4mma4VTWO/0u8S8aBIcoK2I8P4GgT4G1YMz6SozRVRsXQR6H4bW6McdmObj6Jqj7+5o1qhSsQyJ6vuEuosmwTVhwMO70kaoquXA67b4OeN+m2wA6+jal2stt7sxDemX9sNjdc71EsZ8QOOEqWijOyF2HHGLjBSbv40MFcJBd9BL0lqDaMocZLyPHtjQsvD2halBofW+cIkxsQnOr+oICuTHojrVX2/MEZamq9HLAJAuwvAIu/9FAKAcedSk/ru+3KUi76kuR3qHYdswbXEqByAaq+abgwAWg5vX1AU6XsuaOX6bW/D5x3tV3JunD0bvc+kAapDkbcgrFFqULhSM7nsmC7dDKU09qLqDp+WzYiHp/TRWJ/b4KAH+UqrzT0cYHspPtBczXYoK1szEyWaHo8uwmtBJUODB7YKS3TMfd7ICRxXUjp7lk+IZkRJ/GdfV8Qga2VZISXUmHMuFoo2rbWOSET6LE9AV3iappn0kwjcKaRpmFARctbiSVIPxnyyyJXCYvoXjAGceKMR1b742tVCzIUv5Umtukze1QiXAgpggxTxujlTZKTxOhw8kZMW7cHd73AJGieuLvDWDh7Qu+Cg+8gQkigQVGIKmrPuj47P1swIRnqh5RGAWC2wtx2Z5GU9fjCuVbCZGNG14oBoGK+pyiIsdSIcHjfClGP2tEg7Ke2CzzP4RN4ut7lWEgQ0agv4OPASYqmUZp+P1zYQE50Hm09byZ9PPA/7Ep95SB7uEqpxXNIEciB5+3pNSYH8OOFxxWoxYHodv+LjGL5SEp794rr1DnCogu4pGHhkJOeGNlvXwZZR9NTl0gUWeS6M4HmEpiFT+NFee3JJq3dCGLpkKFAMBDQivvKpzSO46MeiWz3YB8eXe7cmdNnl4Fhgsylunx7FIwSlHTwFH3Re9+Z/pq2quJfY4gFXiZNW1QLpQrhPGFu3RR7m4tjnoSHYqJFn+3vmfnoHzUg/Pe6ZUJjUOSQS6Omi7xrCaZTyu42TNXdbwnpPvfOtF2fz23FRzvKh7DOlXuv9o5fTBlwMAwh6hUuFExWW/7vpIW/DkUKPDeOVETiq9IlWizkcmir1DhiWjb8cOu2buxXjbW/NNF6j+D4oL0GI2vWGHvN/7WlSjIXLxhfJFsiFr/LjrrwsZCpzLZNdTpKsfRgk6gpLFRsJpoq8xbpQRibsv5yfQWZvGMcmj2XXKv/lsr3bdXPDxDW5FdbOp5H/wqjAWEseGu0Lx8h/bp73DBq7bTid184ZecMNpwTsJs6kvh6VnfBb9xWFpxMtDAjvAh/BDhvJkXqzQyobZzQLQ0AwIasT9OcthP3MCgZll6Om0+8R+XHccXPbWRadPikDbeY6hIVr8wtKhyR/bfz+DByG+Y+ZnDo9D98xc7b9SRKDVn/9oh5yvPr5/PdMZCa1KaU/rjn8IoUoIZi/q4Uu7kWpZHZFxtD/kSg9OSKUiqd1zQ0oU3L7BKo97RImjL10w5oG8KJxXTQJ//2cvgLIdCGapkpq5h/4tgMJ2Mb+PG+cBR2l/JPf1QaStKN2uNo/5JaDNwMJqybvGA992+Z1T+liNOWVX0Ezy9hJ+EL3A+F75ykzAjwm7r6ZO1Y4P5MaIDRPBz/sruY9Z8HN/lZv9dRPhR/j8U7449B+w74293rlz5X7eMF/jI/fQA9SXR4IEHIinfvcqCzfumh5lldalq7Kf2xv3CgB8EDB7K/TmYxrckJXArGyLlXpi0XbAGvUg+khC86bQIPMmuSHpWxvHRZvky8o84YoTpS4FEU7Csax0QERxOkj1QqTQxLckg0nXkZEPHPenlb1/V3/+8hNX+Gj3Fz+7KOQ2i9xKH0QbjZpjQtyK0wKhC+Z008hIOy+Jv5PJEagZWgM30eeK6OQHTDGj9keUptVQVuOzHI+tgedzNOkZ98RP+QknnljqFmVsptTTkr+1pac98sC1TdNu/C8f3O6GoIca34ENhQR1yQVcmQ01D2jxOV+JW542XmZNHNPtbWIOs8MnY/F6wScPhr1MVMf/9/xmsqZJv3AZkEwoc5G6vsKFhnK5KOVmLDczdYpUvBrFSZxHLv0h2sQ223TY6yqLFjte3j7Yy+caVzyl1sfzvAIU9d0XcQnZ+lxmyZUSchNsogx/piEQXAam+i0r1ENUejHyRX7GrwSQZzUW/e9r3VVPUXBWE18K2SoZ4vVWMCVHbRJpsC+xs0OONDr2hoQ/6hDotbRu/nCw1e1VHNw2qM/VFqcswrRvJy5Aeem6M7aHPQE2C53W0SxB9zp8eq2mldsSQusvjOqxsIyWcmcPG/YxsIhneFakHV/BCAAGRhajSol9PfWEZqaogoBdgmXcogCwhCYT1ph2GW52/NjhKczKCI/9HOUmbtJmDzCAxQbkS3bXD4Ew3NY0tD81/2oAZe6gUYhecbCPl+JvrnMGBFauhJVz+uDuX7ONHDfyujN65+M488B5ZQs9QLciUwLhEZXZ6X5wac0Kouwt7m6imN+BBLY2WIziJHwLNEkXPYN8wwPNuFegP3yVMm2LDAUAyzUbNazlaU90+luwv1t6RK3/JHxh+bxkbNV+m08gToScdhbvQmdFgh/YxJFJoyOWaPj86otzLSi8vPOAS2h23ZYQtp+UDuzmX0MmC31s5OVVEHhwxXRD6gsOQ/sZGK9qPtyDt6L5d8yQLPj+SG9390dXsxBRjcr4RTnHiV2lI0PhZy5SK2HCy5w4OOpsr1kLxU1hTxKLcNjJIZ4MeGN1ksCB1D3aBFfqDQdE/Me5HtdApdlQQUVClbItfq99nwAExEvQHN0uFaKbEcvFZr7WLxDalfm9Z8JuuVV0A6Yzi5NPc3LOaWbB2TS/0XSLlbhR5cCFzFrxQTAllHSUYowDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 4, "shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 3000320, "_total_timesteps": 3000000, "seed": null, "action_noise": null, "start_time": 1653589457.7667656, "learning_rate": 0.0003, "tensorboard_log": "./ppo_lunarlander_v2_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgAJWrPKTYC7vC2MM7gqCWPMqxC7xa8IE9AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvOZVndWuSUCUhpRSlIwBbJRL24wBdJRHQLTCWSs8xKx1fZQoaAZoCWgPQwjAdcWMMO1xQJSGlFKUaBVNHgFoFkdAtMKqUxEfDHV9lChoBmgJaA9DCGglrfjG9nFAlIaUUpRoFU0BAWgWR0C0w1ot6HCXdX2UKGgGaAloD0MIcTs0LMaZcUCUhpRSlGgVTZcBaBZHQLTD1RD1Gsp1fZQoaAZoCWgPQwi85lWd1cogwJSGlFKUaBVLcGgWR0C0w/MFY+0PdX2UKGgGaAloD0MI4JwRpX1wcECUhpRSlGgVTaEBaBZHQLTE2Lx7RfF1fZQoaAZoCWgPQwhLV7CNOEtwQJSGlFKUaBVNDgJoFkdAtMWLpMYdhnV9lChoBmgJaA9DCOqymNh8oHJAlIaUUpRoFUvsaBZHQLTFzjh1klN1fZQoaAZoCWgPQwitodReRJc+QJSGlFKUaBVLk2gWR0C0xfVwkxATdX2UKGgGaAloD0MITptxGuJJckCUhpRSlGgVS/1oFkdAtMammdiDunV9lChoBmgJaA9DCNV5VPzfO3NAlIaUUpRoFUvQaBZHQLTG34Vymyh1fZQoaAZoCWgPQwhi9rLtNCxyQJSGlFKUaBVNegFoFkdAtMdQ+Y+jd3V9lChoBmgJaA9DCD6XqUmwO3BAlIaUUpRoFUvZaBZHQLTHi7EpAlh1fZQoaAZoCWgPQwj/PuPCwchyQJSGlFKUaBVL12gWR0C0yDHM6ij+dX2UKGgGaAloD0MImx9/adHwcECUhpRSlGgVTb0BaBZHQLTItfe1rqN1fZQoaAZoCWgPQwjU7lcBflRxQJSGlFKUaBVNSAFoFkdAtMkSvgWJrXV9lChoBmgJaA9DCJAxdy3hUHNAlIaUUpRoFUuwaBZHQLTJrOOsDGN1fZQoaAZoCWgPQwgcP1QasXNwQJSGlFKUaBVLzGgWR0C0yeRBeHBUdX2UKGgGaAloD0MIYf91bprMckCUhpRSlGgVS79oFkdAtMoZlQMx5HV9lChoBmgJaA9DCAte9BWkuXNAlIaUUpRoFUvAaBZHQLTKT5GjKxN1fZQoaAZoCWgPQwh5P26/PDxyQJSGlFKUaBVLymgWR0C0yoeL74zrdX2UKGgGaAloD0MIf/W4bzXtbkCUhpRSlGgVS8doFkdAtMsm+vhZQ3V9lChoBmgJaA9DCHO4VnvY2nJAlIaUUpRoFUvQaBZHQLTLYHH3lCF1fZQoaAZoCWgPQwhTliGOtd5xQJSGlFKUaBVLzWgWR0C0y5cJlar4dX2UKGgGaAloD0MI9uy5TM0jcUCUhpRSlGgVS8doFkdAtMvM3yZrpXV9lChoBmgJaA9DCJOKxtqfznFAlIaUUpRoFUvKaBZHQLTMBeb/ffp1fZQoaAZoCWgPQwjtgsE193dxQJSGlFKUaBVLu2gWR0C0zKWys0YTdX2UKGgGaAloD0MIsyRATe2pckCUhpRSlGgVS+FoFkdAtMzkk+otMHV9lChoBmgJaA9DCMe44uJoJnNAlIaUUpRoFUvRaBZHQLTNH2NvOyF1fZQoaAZoCWgPQwgQIa6cfeJwQJSGlFKUaBVL+WgWR0C0zWJe3QUpdX2UKGgGaAloD0MIOgfPhOYZckCUhpRSlGgVS9doFkdAtM2dNh3JP3V9lChoBmgJaA9DCMhCdAgcMnFAlIaUUpRoFUvfaBZHQLTORWY4Qz11fZQoaAZoCWgPQwjGFKxxdvhwQJSGlFKUaBVLtWgWR0C0znayv9tNdX2UKGgGaAloD0MIe7slOaAZcUCUhpRSlGgVS/BoFkdAtM66B7NSqHV9lChoBmgJaA9DCPORlPSwKHNAlIaUUpRoFUvAaBZHQLTO7s3Q2Mt1fZQoaAZoCWgPQwidZRah2FJzQJSGlFKUaBVLwGgWR0C0zySxzJZGdX2UKGgGaAloD0MI5urHJvmdS0CUhpRSlGgVS4xoFkdAtM+1mAbyY3V9lChoBmgJaA9DCPOv5ZVrAnJAlIaUUpRoFUvfaBZHQLTP8qH446x1fZQoaAZoCWgPQwiwWMNFLl1xQJSGlFKUaBVL0mgWR0C00C0hNdqtdX2UKGgGaAloD0MIqUvGMRJGcECUhpRSlGgVS8xoFkdAtNBibayrxXV9lChoBmgJaA9DCOZY3lWPznNAlIaUUpRoFUvHaBZHQLTQmoNutOp1fZQoaAZoCWgPQwhGJuDXyDNwQJSGlFKUaBVN5wNoFkdAtNJnn/1g6XV9lChoBmgJaA9DCOvIkc4AuXJAlIaUUpRoFUv/aBZHQLTTGZeAuqZ1fZQoaAZoCWgPQwjBc+/hEp9zQJSGlFKUaBVLyGgWR0C001BakhzOdX2UKGgGaAloD0MIRIgrZ++Yc0CUhpRSlGgVS9RoFkdAtNOLiPyTZHV9lChoBmgJaA9DCEAYeO49O2VAlIaUUpRoFU3oA2gWR0C01S1ea8YidX2UKGgGaAloD0MItOOG340rc0CUhpRSlGgVS8poFkdAtNVmc2BJ7XV9lChoBmgJaA9DCC5Tk+ANMnNAlIaUUpRoFUvUaBZHQLTVoF36hxp1fZQoaAZoCWgPQwgfZcQF4KNzQJSGlFKUaBVL12gWR0C01kXj2i+MdX2UKGgGaAloD0MIOpShKmaTcUCUhpRSlGgVS9ZoFkdAtNZ/rgOz6nV9lChoBmgJaA9DCOuQm+EGeGZAlIaUUpRoFU3oA2gWR0C02DrRWtEHdX2UKGgGaAloD0MI1UDzOfcUckCUhpRSlGgVS71oFkdAtNhvHq/ucHV9lChoBmgJaA9DCF9/Ep87flJAlIaUUpRoFUuqaBZHQLTYnQ8fV7R1fZQoaAZoCWgPQwioqWVrPZlxQJSGlFKUaBVNuAFoFkdAtNmN8pkPMHV9lChoBmgJaA9DCKeSAaCKk29AlIaUUpRoFUvRaBZHQLTZxsolUqB1fZQoaAZoCWgPQwjjGTT0D61yQJSGlFKUaBVL3WgWR0C02gP6fra/dX2UKGgGaAloD0MIQDOID2zvbkCUhpRSlGgVS75oFkdAtNo3R2KVIXV9lChoBmgJaA9DCH4czZGVi3JAlIaUUpRoFUvwaBZHQLTaelJYkmh1fZQoaAZoCWgPQwirCDcZFYhxQJSGlFKUaBVNFQFoFkdAtNszaTOgQHV9lChoBmgJaA9DCOdSXFX2I3BAlIaUUpRoFUvRaBZHQLTbbFxn3+N1fZQoaAZoCWgPQwhmoDL+/dNzQJSGlFKUaBVLymgWR0C026RdY4hmdX2UKGgGaAloD0MIQuigS7jxc0CUhpRSlGgVS+FoFkdAtNvh7gKnenV9lChoBmgJaA9DCDeOWIvPTHFAlIaUUpRoFUvAaBZHQLTcFs9SuQp1fZQoaAZoCWgPQwieB3dn7dlyQJSGlFKUaBVLy2gWR0C03LkJSiuddX2UKGgGaAloD0MIMLq8OdwLcECUhpRSlGgVS9loFkdAtNzz4VRDTnV9lChoBmgJaA9DCBWOIJUi23BAlIaUUpRoFUvUaBZHQLTdLNJe3QV1fZQoaAZoCWgPQwh5d2SsdqFyQJSGlFKUaBVLymgWR0C03WShi9ZidX2UKGgGaAloD0MImdamsT1vcECUhpRSlGgVS7doFkdAtN2WkFfReHV9lChoBmgJaA9DCERQNXp1zHJAlIaUUpRoFUvMaBZHQLTeOcJMQEp1fZQoaAZoCWgPQwgVqwZhLklyQJSGlFKUaBVL+2gWR0C03n+IEbHZdX2UKGgGaAloD0MIOul946tqc0CUhpRSlGgVS9doFkdAtN66jesPrnV9lChoBmgJaA9DCEnb+BOV0XFAlIaUUpRoFUvaaBZHQLTe+E4Nqg11fZQoaAZoCWgPQwg+IqZEEtRxQJSGlFKUaBVL22gWR0C0354X9BKMdX2UKGgGaAloD0MIZr/udCfzckCUhpRSlGgVS8xoFkdAtN/VyMkyDnV9lChoBmgJaA9DCFg4SfMH1HJAlIaUUpRoFUvaaBZHQLTgEVk+X7d1fZQoaAZoCWgPQwigppattRlxQJSGlFKUaBVLy2gWR0C04EluejEfdX2UKGgGaAloD0MINQcI5mgSb0CUhpRSlGgVS85oFkdAtOCCm8/Uv3V9lChoBmgJaA9DCNr/AGuVtXBAlIaUUpRoFUvjaBZHQLThKmNzbN91fZQoaAZoCWgPQwjiP91AwThyQJSGlFKUaBVLxWgWR0C04WCxA0KrdX2UKGgGaAloD0MI9Z81P74ZcECUhpRSlGgVS9xoFkdAtOGbI1cdHXV9lChoBmgJaA9DCCujkc9rP3NAlIaUUpRoFUu+aBZHQLThzzGPxQV1fZQoaAZoCWgPQwj7WSxF8pJyQJSGlFKUaBVL2GgWR0C04gxvFWGRdX2UKGgGaAloD0MIbm5MT1i5bkCUhpRSlGgVS8toFkdAtOKuiCaqj3V9lChoBmgJaA9DCIelgR8VP3JAlIaUUpRoFUvWaBZHQLTi6SGahHt1fZQoaAZoCWgPQwhm3T8WoshxQJSGlFKUaBVLvWgWR0C04x09dNWVdX2UKGgGaAloD0MI+kZ0z3pPcUCUhpRSlGgVS9poFkdAtONbSMLncXV9lChoBmgJaA9DCEuwOJy5TnBAlIaUUpRoFUvcaBZHQLTjmRVZLZl1fZQoaAZoCWgPQwicMGE0q1FxQJSGlFKUaBVLwWgWR0C05Dhri2lVdX2UKGgGaAloD0MIiEm4kEf9bkCUhpRSlGgVS/toFkdAtOR+4lQdj3V9lChoBmgJaA9DCFX5npEIAnBAlIaUUpRoFU0BAWgWR0C05Mr2L5ymdX2UKGgGaAloD0MIwvo/hzkycECUhpRSlGgVS91oFkdAtOUIUTL4e3V9lChoBmgJaA9DCLmq7Ltix3JAlIaUUpRoFUvbaBZHQLTlr9YOlO51fZQoaAZoCWgPQwigUE8fwbxwQJSGlFKUaBVL1GgWR0C05ej987ZGdX2UKGgGaAloD0MIrORjd0E/cUCUhpRSlGgVS+JoFkdAtOYn9fkWAXV9lChoBmgJaA9DCEQwDi7duHJAlIaUUpRoFUvkaBZHQLTmZ+RHPNV1fZQoaAZoCWgPQwgC9WbUPN9xQJSGlFKUaBVNJQFoFkdAtOa8KG+K0nV9lChoBmgJaA9DCOHwgojUUnJAlIaUUpRoFUvraBZHQLTnZ6LOzIF1fZQoaAZoCWgPQwj8Gd6sQcByQJSGlFKUaBVLv2gWR0C055xpg1FZdX2UKGgGaAloD0MITDWzlgI2ckCUhpRSlGgVS+9oFkdAtOfgTWXkYHV9lChoBmgJaA9DCJPjTungwW9AlIaUUpRoFUvmaBZHQLToIYUWVNZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11720, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022", "Python": "3.6.9", "Stable-Baselines3": "1.3.0", "PyTorch": "1.10.2+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.19.0"}}
galeos_model_lander_ppo.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0cf7868727e8cf05afa37c757ae97de5a19cbcefb944e251aac5e0b749eb4ab
3
- size 144024
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd48d7a45f20c0359da80e1b47acb8d2b549481cbb45ac6a5a74c061bf658ad
3
+ size 151163
galeos_model_lander_ppo/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.0
 
1
+ 1.3.0
galeos_model_lander_ppo/data CHANGED
@@ -1,81 +1,83 @@
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
- ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5572e5710>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5572e57a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5572e5830>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5572e58c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ff5572e5950>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ff5572e59e0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5572e5a70>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7ff5572e5b00>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5572e5b90>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5572e5c20>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5572e5cb0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7ff5573365d0>"
 
 
 
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
- "_shape": [
28
  8
29
  ],
30
  "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
  "high": "[inf inf inf inf inf inf inf inf]",
32
  "bounded_below": "[False False False False False False False False]",
33
  "bounded_above": "[False False False False False False False False]",
34
- "_np_random": null
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
- "_shape": [],
41
  "dtype": "int64",
42
- "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
- "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652122932.8785794,
51
  "learning_rate": 0.0003,
52
- "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJowEz32jEm6RqImuKKWBLNFc6Y6ZnFBNwAAgD8AAIA/zUBLvMPpUbpwo1O78zqRNjBw4TmZGDc6AACAPwAAgD9mN8299rhBuo6CRLg3/3k0dhABu/OKXjcAAIA/AACAP7PyZD53J/E+VoBfvtwMUL650QQ+IAT7vAAAAAAAAAAA5uJeveE0gLoXIY67hlNmNqoRwLpcAaQ6AACAPwAAgD8Ayam84UKjOUwsyDtzcfQ35iuxu2at1bQAAIA/AACAPwAj6rwfXam5BwHCuTP6IDZg6mY7o1PhOAAAgD8AAIA/wIgavnESW7vXeYy80U0Lukh4kjxtwu06AACAPwAAgD8aRwE+GmKHPnWIY77Eao2+VPLCPZ7X070AAAAAAAAAAOZggL1cI2G6QpkXuabab7Sv2NE6IsYtOAAAgD8AAIA/5nQJvY+CS7gutRs5oZmNNNoI4DvZAzm4AACAPwAAgD+aI/A9nJ2hPzazmz7u2/q+Rm83Pp3KdL0AAAAAAAAAAABeajzsCcW5MIvbuv4LCLbYGkU6Dq0BOgAAgD8AAIA/TYO4vY/mSroPT5C5ST8xtLzFtrrWw6U4AACAPwAAgD8mddy9e7SCuMYpVLtZ8Ic4QIZfu9IHtTkAAIA/AACAP/qmOT4KN1c834i6vXiKBbyqJe496BsCvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImrM+5ZgYYECUhpRSlIwBbJRN6AOMAXSUR0B4vBTMqz7edX2UKGgGaAloD0MIt0QuOAO9YUCUhpRSlGgVTegDaBZHQHjVxJul41R1fZQoaAZoCWgPQwhhU+dR8TBTQJSGlFKUaBVLjWgWR0B41vPgNwzddX2UKGgGaAloD0MIxD9s6dFhZUCUhpRSlGgVTegDaBZHQHkoEJa7mMh1fZQoaAZoCWgPQwicNA2KZuxgQJSGlFKUaBVN6ANoFkdAeTfJkGzKLnV9lChoBmgJaA9DCGu5MxMM2UxAlIaUUpRoFUuCaBZHQHk8IznA6+51fZQoaAZoCWgPQwii7gOQ2ixBQJSGlFKUaBVLuWgWR0B5STQb+98JdX2UKGgGaAloD0MIBitOtRbRXUCUhpRSlGgVTegDaBZHQHlKU3juKGd1fZQoaAZoCWgPQwjXwiy08+xjQJSGlFKUaBVN6ANoFkdAeVIRRdhRZXV9lChoBmgJaA9DCL6h8Nk6oV9AlIaUUpRoFU3oA2gWR0B5W4CYCyQgdX2UKGgGaAloD0MIuK0tPK9CYECUhpRSlGgVTegDaBZHQHldGus90Rx1fZQoaAZoCWgPQwgbZmg8EQViQJSGlFKUaBVN6ANoFkdAeXUU8V58jXV9lChoBmgJaA9DCLVU3o7wgWVAlIaUUpRoFU3oA2gWR0B5eXe+Eh7mdX2UKGgGaAloD0MIRdeFHxw7ZUCUhpRSlGgVTegDaBZHQHl8Q5zYEnt1fZQoaAZoCWgPQwgOEMzR438iwJSGlFKUaBVLt2gWR0B5mq7oSteVdX2UKGgGaAloD0MIIqev52u3YkCUhpRSlGgVTegDaBZHQHmuyq6vq1R1fZQoaAZoCWgPQwijAbwFEgFpQJSGlFKUaBVN6ANoFkdAea/ryUcGT3V9lChoBmgJaA9DCEMB28EItWRAlIaUUpRoFU3oA2gWR0B5zR4yGi5/dX2UKGgGaAloD0MI3o5wWvDjXECUhpRSlGgVTegDaBZHQHnZ/IfbKzR1fZQoaAZoCWgPQwgKSzygbCJjQJSGlFKUaBVN6ANoFkdAeeJL3sXzlXV9lChoBmgJaA9DCKgbKPBOA2FAlIaUUpRoFU3oA2gWR0B6Buq814xDdX2UKGgGaAloD0MIkEqxo/GVYECUhpRSlGgVTegDaBZHQHpkZi7TUiJ1fZQoaAZoCWgPQwgLmwEuyG5eQJSGlFKUaBVN6ANoFkdAemm0Bfa6BnV9lChoBmgJaA9DCOo/a378ZGJAlIaUUpRoFU3oA2gWR0B6eRGFzuF6dX2UKGgGaAloD0MI/TIYIxJPZUCUhpRSlGgVTegDaBZHQHp6SNfgJkZ1fZQoaAZoCWgPQwicacL2E7dhQJSGlFKUaBVN6ANoFkdAeoKr0aqCH3V9lChoBmgJaA9DCNTX8zVLAWdAlIaUUpRoFU2yAmgWR0B6ipRk3CKrdX2UKGgGaAloD0MIKPIk6RpVY0CUhpRSlGgVTegDaBZHQHqMTJlrdnF1fZQoaAZoCWgPQwh2xYzwdg9jQJSGlFKUaBVN6ANoFkdAeo3TWGyooHV9lChoBmgJaA9DCH4AUps4FUpAlIaUUpRoFUu3aBZHQHqTO+AVfu11fZQoaAZoCWgPQwjMY83IIPVKQJSGlFKUaBVLo2gWR0B6mwkka/ATdX2UKGgGaAloD0MIwvf+Bu3GUUCUhpRSlGgVS5FoFkdAeqd3NcGC7XV9lChoBmgJaA9DCD6zJEDNKmNAlIaUUpRoFU3oA2gWR0B6p66bvw3HdX2UKGgGaAloD0MIcxO1NDf7YUCUhpRSlGgVTegDaBZHQHqqUidJ8OV1fZQoaAZoCWgPQwi/J9ap8gtPQJSGlFKUaBVLuGgWR0B6z/DR+jM3dX2UKGgGaAloD0MIaf0tAfi3RkCUhpRSlGgVS8VoFkdAetcmoR7JGXV9lChoBmgJaA9DCAyyZfk6YmNAlIaUUpRoFU3oA2gWR0B64awGGEf1dX2UKGgGaAloD0MIpUkp6HbgYECUhpRSlGgVTegDaBZHQHri8AJb+tN1fZQoaAZoCWgPQwgG2EenruwjwJSGlFKUaBVLrWgWR0B6+0PiDM/ydX2UKGgGaAloD0MI6ZleYizWYUCUhpRSlGgVTegDaBZHQHsCDuOS4e91fZQoaAZoCWgPQwguOe6UjttgQJSGlFKUaBVN6ANoFkdAew9fbKzRhXV9lChoBmgJaA9DCP1P/u4dUl9AlIaUUpRoFU3oA2gWR0B7F7KFIuoQdX2UKGgGaAloD0MIFw6EZAE7MkCUhpRSlGgVS5loFkdAezUD/lyR0XV9lChoBmgJaA9DCCEdHsJ4D2JAlIaUUpRoFU3oA2gWR0B7PUc5sCT2dX2UKGgGaAloD0MIcov5uaGGXUCUhpRSlGgVTegDaBZHQHubDK9wm3R1fZQoaAZoCWgPQwhxAP2+f05eQJSGlFKUaBVN6ANoFkdAe7GDGcWj5HV9lChoBmgJaA9DCDIge737NGJAlIaUUpRoFU3oA2gWR0B7ust6HCXQdX2UKGgGaAloD0MIKJmc2hmBXkCUhpRSlGgVTegDaBZHQHvF3B+F10V1fZQoaAZoCWgPQwgSEmkb/2xkQJSGlFKUaBVN6ANoFkdAe8ftOmBOHnV9lChoBmgJaA9DCPZE14WfUmNAlIaUUpRoFU3oA2gWR0B7zn9LpRoAdX2UKGgGaAloD0MIDM7g7xebTUCUhpRSlGgVS5poFkdAe9ao11nuiXV9lChoBmgJaA9DCFtc4zPZy11AlIaUUpRoFU3oA2gWR0B715BzFMqSdX2UKGgGaAloD0MIZqAy/n0mNUCUhpRSlGgVS6JoFkdAe+BzErGzbHV9lChoBmgJaA9DCFxWYTNADGJAlIaUUpRoFU3oA2gWR0B75N7fHggpdX2UKGgGaAloD0MIeXWOAdmzMUCUhpRSlGgVS65oFkdAfAYT1kDp1XV9lChoBmgJaA9DCFQ57Sm5o2BAlIaUUpRoFU3oA2gWR0B8FBBE8aGYdX2UKGgGaAloD0MI9S1zuiyVZECUhpRSlGgVTegDaBZHQHwdw8OkLx91fZQoaAZoCWgPQwhOXmQC/sdhQJSGlFKUaBVN6ANoFkdAfB7ogmqo63V9lChoBmgJaA9DCFETfT7KKWNAlIaUUpRoFU3oA2gWR0B8NdZMcp9adX2UKGgGaAloD0MIn6wYrg6IWECUhpRSlGgVTegDaBZHQHw8L8R+SbJ1fZQoaAZoCWgPQwi8H7dfPhZcQJSGlFKUaBVN6ANoFkdAfFASbpeNUHV9lChoBmgJaA9DCONTAIxnQ2ZAlIaUUpRoFU3oA2gWR0B8a/nA6+36dX2UKGgGaAloD0MIXU90XXhDZUCUhpRSlGgVTegDaBZHQHxzXCoCMgl1fZQoaAZoCWgPQwiCxkyiXj9oQJSGlFKUaBVN6ANoFkdAfM8lum78N3V9lChoBmgJaA9DCHIZNzXQbmRAlIaUUpRoFU3oA2gWR0B8+MTFl05mdX2UKGgGaAloD0MIPWL03EKXW0CUhpRSlGgVTegDaBZHQHz6wXl8w6B1fZQoaAZoCWgPQwhGXAAaJQxlQJSGlFKUaBVN6ANoFkdAfQGcCo0hvHV9lChoBmgJaA9DCEM8Ei/PPmJAlIaUUpRoFU3oA2gWR0B9CfS7Xg+AdX2UKGgGaAloD0MIsffii3aPZECUhpRSlGgVTegDaBZHQH0Kz3M6ikB1fZQoaAZoCWgPQwjWdD3RdaxjQJSGlFKUaBVN6ANoFkdAfRc+Sr5qM3V9lChoBmgJaA9DCCyBlNi17mNAlIaUUpRoFU3oA2gWR0B9N2fywwCbdX2UKGgGaAloD0MIF4OHad+KT0CUhpRSlGgVS7ZoFkdAfT4NutOmBXV9lChoBmgJaA9DCAr2X+emdGNAlIaUUpRoFU3oA2gWR0B9RI+gUUO/dX2UKGgGaAloD0MIEr2MYrlJZ0CUhpRSlGgVTegDaBZHQH1Nw2l2vB91fZQoaAZoCWgPQwguxsA6DtFjQJSGlFKUaBVN6ANoFkdAfU7RVIZqEnV9lChoBmgJaA9DCDaQLjatK19AlIaUUpRoFU3oA2gWR0B9Yr79AHE/dX2UKGgGaAloD0MIVYfcDDdVYkCUhpRSlGgVTegDaBZHQH1oYCIUJv51fZQoaAZoCWgPQwjoM6DeDGdkQJSGlFKUaBVN6ANoFkdAfXsqKxcE/3V9lChoBmgJaA9DCFZ9rrbidGhAlIaUUpRoFU3oA2gWR0B9lkYGdI5HdX2UKGgGaAloD0MITBdi9UebZUCUhpRSlGgVTegDaBZHQH2dnSF49ox1fZQoaAZoCWgPQwg9RQ4RN4NoQJSGlFKUaBVN6ANoFkdAfa8WWyC4BnV9lChoBmgJaA9DCHQmbaru1UdAlIaUUpRoFUuRaBZHQH4C0gjhUBJ1fZQoaAZoCWgPQwgXSbvRR8dhQJSGlFKUaBVN6ANoFkdAfiFLJSzgM3V9lChoBmgJaA9DCO1I9Z3f+mRAlIaUUpRoFU3oA2gWR0B+Iy3z+WGAdX2UKGgGaAloD0MIeGLWi6EZYkCUhpRSlGgVTegDaBZHQH4qT2i+L3t1fZQoaAZoCWgPQwhMpgpGJbdCQJSGlFKUaBVLpmgWR0B+KuM98qnWdX2UKGgGaAloD0MIZyYYzjXMXkCUhpRSlGgVTegDaBZHQH4ybU1AJLN1fZQoaAZoCWgPQwgyqgzjbiZiQJSGlFKUaBVN6ANoFkdAfjNf9xZMc3V9lChoBmgJaA9DCPxwkBDlz1VAlIaUUpRoFUuuaBZHQH5H+1KGtZF1fZQoaAZoCWgPQwhVNNb+zvNiQJSGlFKUaBVN6ANoFkdAfmAbEP1+RnV9lChoBmgJaA9DCNF4IohzJ2NAlIaUUpRoFU3oA2gWR0B+ZneMyad+dX2UKGgGaAloD0MIB7MJMCwWZkCUhpRSlGgVTegDaBZHQH5s/Nu+AVh1fZQoaAZoCWgPQwgVAU7v4hpjQJSGlFKUaBVN6ANoFkdAfnW8/lhgE3V9lChoBmgJaA9DCEq4kEdw2lhAlIaUUpRoFU3oA2gWR0B+dtprULDydX2UKGgGaAloD0MI0xOWeECgYECUhpRSlGgVTegDaBZHQH6MVXV9Wp91fZQoaAZoCWgPQwi1+X/VkedfQJSGlFKUaBVN6ANoFkdAfpItKZlWfnV9lChoBmgJaA9DCHxD4bP1BWNAlIaUUpRoFU3oA2gWR0B+pTLTx5LRdX2UKGgGaAloD0MIqyaIug+KT0CUhpRSlGgVS71oFkdAfrywqRU3oHV9lChoBmgJaA9DCHcSEf5F/mZAlIaUUpRoFU3oA2gWR0B+yRqSHM2WdX2UKGgGaAloD0MIP8Vx4NWDYECUhpRSlGgVTegDaBZHQH7b59JBgNR1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
- ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
@@ -86,9 +88,8 @@
86
  "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
  },
91
  "clip_range_vf": null,
92
- "normalize_advantage": true,
93
  "target_kl": null
94
  }
 
1
  {
2
  "policy_class": {
3
  ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee74909ea0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee74909f28>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7490f048>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7490f0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fee7490f158>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fee7490f1e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7490f268>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fee7490f2f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7490f378>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7490f400>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7490f488>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_registry": "<_weakrefset.WeakSet object at 0x7fee74908240>",
20
+ "_abc_cache": "<_weakrefset.WeakSet object at 0x7fee74908278>",
21
+ "_abc_negative_cache": "<_weakrefset.WeakSet object at 0x7fee749082b0>",
22
+ "_abc_negative_cache_version": 59
23
  },
24
  "verbose": 1,
25
  "policy_kwargs": {},
26
  "observation_space": {
27
  ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gASVVwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgLiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgLiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgTaBVLAIWUaBeHlFKUKEsBSwiFlGgriUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoO4wFc3RhdGWUfZQojANrZXmUaBNoFUsAhZRoF4eUUpQoSwFNcAKFlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYolCwAkAAPV6Ti82uAiW6HKF9atJ6/FvoQGpQLXLqt3hd66S1u+y1Egy06FDKJl9CeyHUHkiuSLg1O8LKL6ISqtcDk7AC8AFdximlu+/iQWNAIkmTezZtA4fg6iW9gdjRytcRkCHXyyWXiYqmwMiR/zB1Rs6Gb4x65rriNDPbup1YHdXi64U3InlaSAuSyaHgpLbfaKWesyXBk3y2/aP5u6rRmLMYqMuX5+D5xx0QN1/cOZNlMRhtO6h5iLI+TTeAIi45D8j//DbV32nz86agYGJz/4gTpPfXt1T8al45zMyyGhKuxPNsVOY+5WY8xm3AFgBsXJJjKY6zcaNy5XdKvV8/UQmMzisKYtd5I7yzdrwUS4oEUyez1AzfQjCSRDpaBVw/4MNsUH+28eRC0vwUm+89GPSb0467tICAaFmId7aUC4zYZesS9yJu1wn2ZMLuEWrdaUgXcZahE/WEMEd9N847padfSLu6nJmDLhRPsPj05oZMWg/sZSFVZIQtjH8R4QWQHwJtPxz1c7SPUwKr/mlvVI7UT6RZHjK6p+XMDyim886lSH92MaUrI+h5+FNr2ue5qAhIk+/nH6Ek5p+ZH45KsUTB/ERHbpOd4LWK88o0NbOWMP9ws7VxHdHSBUTb9pMtPYC7UdF6YPtnfrAL6OrqFmZVIHVgjU7Ph8F/as84D0UxHUeMOkrB0nBQMsqdzmQwbBQGr2dKBFN+jTJBuEcPlXW5iHwnBqHVxeds5ZJmgetwh3RIZNYi+dZUGOAAMj4FEfMK8+VgYNSseIcR3Zll7I6roohDve7d1WlN3jtUQcHsR5+IfB7HHQxVS8tMlCbrgOKZRep3ZbiMkc19Egrs8pQlhC11pMiwbHAUGK345bp1rOu0r/Se/bp6tcZcjZMn8EnPzXIXUMSFrlOtCuAReMA1pTZ+cCgU+BGSeLaHnpvrypMGCNeL38mMYIHNxG+JYwDiqmysEURsfkvWlrTfi+AfTFh80h4e0YcuBubjYvbt5m+RipmRGf61hJxypext0rtcHZuP2rAzA6jI6H7hQxSBa7nKGXOQ742JxCkah16ZTH7yAxvONeCRgALCcoa4MkUmH8cfZtEXm99XL6922RzgIEfyLZDeFK01ZVHj5gyitwo3TbB1ZxdWRjD7G1QxWp7n3MRzDlt0NUMHX5sHjbZcsY9Kwte7L1lMP4JK/mHgjhdfeQSdbaXotNSCDc2x6wmH865s/rlSDM4A2UoBwxbASICZySSBRXRHAXXzu403baHzFkVqyusdz5t4JLTUOGf21wgpMMxQdolA/wzvGlrXU/ayQFwVczo5e1XSizcZHt2mrY6F/17eIcqVeZHHAz800DCWxvo2E6hlkrOipd8JhoO2dhqo97dTLLvDN5gbqqCLe4SRNAz0++NYDpMohTcmIJOd7l8o0mvkZZ9TlApPR4c279SAYwYtlqBm9MeQJElyBviiG4ZIRulh64z8pmvtKazrvXFbigt2qdL9Pmx+ngBrY0zWS4n2QXoZ07I/AyCXir69CdCZjHWLRT+p30f2No45RDDQntT9xPMdLhZd815n3CVcMoU0kC3kmVeIpLKRr3jjhuO5/BIAF856xS+U765Co6EQ01wehngPUtOoLhXgZfl4pEJZf1ykma/z8cNsYSL6U724mn2yJeV3NChRSDZ9lgQYO60qjGMFQGnxMBbt0mKuU4vBWixl483l0DsQKd0a/2jPkhW7RodX/s25TOxj/Ai2n+gwzVV8BeqLgrPDjK213pP4EFzrMm45Qk/1IfZoioMyF3d6mYVT+03gWtAUAjwtI/LqXeV7huBxdZlUuzuQbW1+nh/NYQ6Vofz6jAmYTz5o1nZUU+yeBTQP7UXDGu/Xuyn6Jtr/lPwGeI5687PgzNG5BdoV6t2arCvBdtsokmyrX+v+F2dAZ3mqRRLthKK206b9pPnC9WSQG+OboynIvXWhFHkGojIFpf5o2ur1fKtQSrCn963ynkTW/XpuNaOMgGYrGSRoLoAEQEaav+0nyU1P3E8UnFg5IJRwi6tcdmYmY3btLKeNZyL2Dv74pZulJUcvwLaBj90/9ow/bF30l4B/iTpBQC6Aupm1tRn2Ad0qiFSnEYgOyDP0TexAOF2uj+ftKDFo7v8omOOy2fy+rwBTwD5xZUOplIUk2dz015+ZG6lNcjytaSlNoyh5yTboFf4soKMAswyzeqhYRBW/HeqSHNekR9dilRl31YUbr4XK7ejlyAcXCcq1aHfG0rNlx9RLbqmxr9ZclbkSWETEsMi6z9YduWet5o1+MAgSDxdiEziB0VXTXhTVYuwBoGEMT7Vir9rfoh4uQrCu9rp+HSbVQtKIXYPR0V5XjhLUW5dxu9A4Afh4B6WfhH7auxRcxwLQn64ov7ndt/Tz1KkQAOokK0RNzEBgREpy2PmxlhUrJwhzMVxWtLYjRdQfv9pxTwAJ1i9uJso/HuTh3zoTThGiUV6eWhUVtMw9ja8usl18wFj/pUppFT2rBF3y+yxomYmeWKya/87C52hA5HZz2nv7kRBuk9rh/pVa0+GmWKSiq5HIlGDPl45J4BgQAGDB6M7JM9i8LAI6d2W0bU5qwaP9mhseIenpM4qPOBc96aZcFA6+ntcMlbY+wON6K0bHbHH8Gr2LlyTrmKuYuVBbyDooGttSBFUw6UtSnQ6azlVlmG++cy0qGnBw2F+ajJTpZAFpOOFH/TDRAL3B6Awf96mZVZCXscbfQ1D3HKwwbDYF93tLNuO8Atj0UnEe8nrNXKumeB2KtifHoG+hLYHOBhLn+68QfbG/dsR4G6KVpfR/YpgjUR6Cc8aZ2tBZzEfCg4UK3rc+YMfXZEG9p93AahoQSgySMi3r2BsrN9YIH+7XHPlPdePkfTrJUV+TD0Zzq+ZaiFlyWvyJdtkmx1cFj9gPSBkd4mGV7RF0yV8BWKldEXUJz/pvv3vi/B5QsZuOQBLKjZ8tYkmObbYrgBAhGwq2O9pEWMszcI+EWqxNdbMXXOOsqVJdiPF6bTalcczoe79Tu9Ktv3D8oahk97/UTjC7WA1LRewKaguyAPXk+YlOEvidOxu2AexwUWb5fd95jYzoqH27PwSlCxSSWrf2go0aaCrsAKm4gfat6vr9/KankN+8XjxegeYG8jwTkCDlXns5Rzi48+YOC0DTk5HcrjRmk6NFSVfaI7GxK2hzmZOdSsRvykn1zm6GvAD7Mt5VACATQD8tPfSTu3/t7vDVjraAF6psf/P644g3HsSyKolWJ2w0nM31J76/myWWnTl+sp/FCzCjTuFcsHlGroCN6CYJdzAmzV0tkGe0qwUKx2+fHvkrbSckjyvL5R0lGKMA3Bvc5RLEHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
29
  "dtype": "float32",
30
+ "shape": [
31
  8
32
  ],
33
  "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
34
  "high": "[inf inf inf inf inf inf inf inf]",
35
  "bounded_below": "[False False False False False False False False]",
36
  "bounded_above": "[False False False False False False False False]",
37
+ "_np_random": "RandomState(MT19937)"
38
  },
39
  "action_space": {
40
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
41
+ ":serialized:": "gASVSwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoFIwFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoCIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAqMAnU0lImIh5RSlChLA2gOTk5OSv////9K/////0sAdJRiiULACQAA4ZGWsoU2ukl3uz3+xAPAuLabmXnx/BDsasIgP6ftX8mpvMXO//wsE19SfLu1U4XRSteF4OLvxR2L/8Zsyo6cZmwjFgPBe7n1iQxgbcZc1ou2Wc2YfFZnY3DK7EpOAN1eToU3h+/ZS2WOHUAcl0K2S9bp5rRZMz9qTE6Cld+qsH2n3/A9LrzFrVbO/xmjnFsIIFLdTld/HFdhl5McCqAHLdU837H9hd3rrXpkITbhJsIy0dHGUkCqnO8hNVBjo5bEv6qb6ktBZdqdhKNNHv9YSzjaZd2xR06F8nXBiXltqLOFBjXsKp6E2tFA16d7uhqqLOLegEOlmEMd36Fl6KR7tVyjxl8aih1kFzzwFoYlil9H0Vxpqg5PpBZ7/cG/z08/RdE9sw7gD/pg3jtWu4Bu4JqP0aXwOuVh3d630AzxhHVxe1Sm0LmTx83d2t7/VHZEO1ZUTbsUHYIEs4mma4VTWO/0u8S8aBIcoK2I8P4GgT4G1YMz6SozRVRsXQR6H4bW6McdmObj6Jqj7+5o1qhSsQyJ6vuEuosmwTVhwMO70kaoquXA67b4OeN+m2wA6+jal2stt7sxDemX9sNjdc71EsZ8QOOEqWijOyF2HHGLjBSbv40MFcJBd9BL0lqDaMocZLyPHtjQsvD2halBofW+cIkxsQnOr+oICuTHojrVX2/MEZamq9HLAJAuwvAIu/9FAKAcedSk/ru+3KUi76kuR3qHYdswbXEqByAaq+abgwAWg5vX1AU6XsuaOX6bW/D5x3tV3JunD0bvc+kAapDkbcgrFFqULhSM7nsmC7dDKU09qLqDp+WzYiHp/TRWJ/b4KAH+UqrzT0cYHspPtBczXYoK1szEyWaHo8uwmtBJUODB7YKS3TMfd7ICRxXUjp7lk+IZkRJ/GdfV8Qga2VZISXUmHMuFoo2rbWOSET6LE9AV3iappn0kwjcKaRpmFARctbiSVIPxnyyyJXCYvoXjAGceKMR1b742tVCzIUv5Umtukze1QiXAgpggxTxujlTZKTxOhw8kZMW7cHd73AJGieuLvDWDh7Qu+Cg+8gQkigQVGIKmrPuj47P1swIRnqh5RGAWC2wtx2Z5GU9fjCuVbCZGNG14oBoGK+pyiIsdSIcHjfClGP2tEg7Ke2CzzP4RN4ut7lWEgQ0agv4OPASYqmUZp+P1zYQE50Hm09byZ9PPA/7Ep95SB7uEqpxXNIEciB5+3pNSYH8OOFxxWoxYHodv+LjGL5SEp794rr1DnCogu4pGHhkJOeGNlvXwZZR9NTl0gUWeS6M4HmEpiFT+NFee3JJq3dCGLpkKFAMBDQivvKpzSO46MeiWz3YB8eXe7cmdNnl4Fhgsylunx7FIwSlHTwFH3Re9+Z/pq2quJfY4gFXiZNW1QLpQrhPGFu3RR7m4tjnoSHYqJFn+3vmfnoHzUg/Pe6ZUJjUOSQS6Omi7xrCaZTyu42TNXdbwnpPvfOtF2fz23FRzvKh7DOlXuv9o5fTBlwMAwh6hUuFExWW/7vpIW/DkUKPDeOVETiq9IlWizkcmir1DhiWjb8cOu2buxXjbW/NNF6j+D4oL0GI2vWGHvN/7WlSjIXLxhfJFsiFr/LjrrwsZCpzLZNdTpKsfRgk6gpLFRsJpoq8xbpQRibsv5yfQWZvGMcmj2XXKv/lsr3bdXPDxDW5FdbOp5H/wqjAWEseGu0Lx8h/bp73DBq7bTid184ZecMNpwTsJs6kvh6VnfBb9xWFpxMtDAjvAh/BDhvJkXqzQyobZzQLQ0AwIasT9OcthP3MCgZll6Om0+8R+XHccXPbWRadPikDbeY6hIVr8wtKhyR/bfz+DByG+Y+ZnDo9D98xc7b9SRKDVn/9oh5yvPr5/PdMZCa1KaU/rjn8IoUoIZi/q4Uu7kWpZHZFxtD/kSg9OSKUiqd1zQ0oU3L7BKo97RImjL10w5oG8KJxXTQJ//2cvgLIdCGapkpq5h/4tgMJ2Mb+PG+cBR2l/JPf1QaStKN2uNo/5JaDNwMJqybvGA992+Z1T+liNOWVX0Ezy9hJ+EL3A+F75ykzAjwm7r6ZO1Y4P5MaIDRPBz/sruY9Z8HN/lZv9dRPhR/j8U7449B+w74293rlz5X7eMF/jI/fQA9SXR4IEHIinfvcqCzfumh5lldalq7Kf2xv3CgB8EDB7K/TmYxrckJXArGyLlXpi0XbAGvUg+khC86bQIPMmuSHpWxvHRZvky8o84YoTpS4FEU7Csax0QERxOkj1QqTQxLckg0nXkZEPHPenlb1/V3/+8hNX+Gj3Fz+7KOQ2i9xKH0QbjZpjQtyK0wKhC+Z008hIOy+Jv5PJEagZWgM30eeK6OQHTDGj9keUptVQVuOzHI+tgedzNOkZ98RP+QknnljqFmVsptTTkr+1pac98sC1TdNu/C8f3O6GoIca34ENhQR1yQVcmQ01D2jxOV+JW542XmZNHNPtbWIOs8MnY/F6wScPhr1MVMf/9/xmsqZJv3AZkEwoc5G6vsKFhnK5KOVmLDczdYpUvBrFSZxHLv0h2sQ223TY6yqLFjte3j7Yy+caVzyl1sfzvAIU9d0XcQnZ+lxmyZUSchNsogx/piEQXAam+i0r1ENUejHyRX7GrwSQZzUW/e9r3VVPUXBWE18K2SoZ4vVWMCVHbRJpsC+xs0OONDr2hoQ/6hDotbRu/nCw1e1VHNw2qM/VFqcswrRvJy5Aeem6M7aHPQE2C53W0SxB9zp8eq2mldsSQusvjOqxsIyWcmcPG/YxsIhneFakHV/BCAAGRhajSol9PfWEZqaogoBdgmXcogCwhCYT1ph2GW52/NjhKczKCI/9HOUmbtJmDzCAxQbkS3bXD4Ew3NY0tD81/2oAZe6gUYhecbCPl+JvrnMGBFauhJVz+uDuX7ONHDfyujN65+M488B5ZQs9QLciUwLhEZXZ6X5wac0Kouwt7m6imN+BBLY2WIziJHwLNEkXPYN8wwPNuFegP3yVMm2LDAUAyzUbNazlaU90+luwv1t6RK3/JHxh+bxkbNV+m08gToScdhbvQmdFgh/YxJFJoyOWaPj86otzLSi8vPOAS2h23ZYQtp+UDuzmX0MmC31s5OVVEHhwxXRD6gsOQ/sZGK9qPtyDt6L5d8yQLPj+SG9390dXsxBRjcr4RTnHiV2lI0PhZy5SK2HCy5w4OOpsr1kLxU1hTxKLcNjJIZ4MeGN1ksCB1D3aBFfqDQdE/Me5HtdApdlQQUVClbItfq99nwAExEvQHN0uFaKbEcvFZr7WLxDalfm9Z8JuuVV0A6Yzi5NPc3LOaWbB2TS/0XSLlbhR5cCFzFrxQTAllHSUYowDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
42
  "n": 4,
43
+ "shape": [],
44
  "dtype": "int64",
45
+ "_np_random": "RandomState(MT19937)"
46
  },
47
+ "n_envs": 1,
48
+ "num_timesteps": 3000320,
49
+ "_total_timesteps": 3000000,
 
50
  "seed": null,
51
  "action_noise": null,
52
+ "start_time": 1653589457.7667656,
53
  "learning_rate": 0.0003,
54
+ "tensorboard_log": "./ppo_lunarlander_v2_tensorboard/",
55
  "lr_schedule": {
56
  ":type:": "<class 'function'>",
57
+ ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
58
  },
59
  "_last_obs": {
60
  ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgAJWrPKTYC7vC2MM7gqCWPMqxC7xa8IE9AACAPwAAgD+UdJRiLg=="
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
66
  },
67
  "_last_original_obs": null,
68
  "_episode_num": 0,
69
  "use_sde": false,
70
  "sde_sample_freq": -1,
71
+ "_current_progress_remaining": -0.00010666666666669933,
72
  "ep_info_buffer": {
73
  ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gASVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvOZVndWuSUCUhpRSlIwBbJRL24wBdJRHQLTCWSs8xKx1fZQoaAZoCWgPQwjAdcWMMO1xQJSGlFKUaBVNHgFoFkdAtMKqUxEfDHV9lChoBmgJaA9DCGglrfjG9nFAlIaUUpRoFU0BAWgWR0C0w1ot6HCXdX2UKGgGaAloD0MIcTs0LMaZcUCUhpRSlGgVTZcBaBZHQLTD1RD1Gsp1fZQoaAZoCWgPQwi85lWd1cogwJSGlFKUaBVLcGgWR0C0w/MFY+0PdX2UKGgGaAloD0MI4JwRpX1wcECUhpRSlGgVTaEBaBZHQLTE2Lx7RfF1fZQoaAZoCWgPQwhLV7CNOEtwQJSGlFKUaBVNDgJoFkdAtMWLpMYdhnV9lChoBmgJaA9DCOqymNh8oHJAlIaUUpRoFUvsaBZHQLTFzjh1klN1fZQoaAZoCWgPQwitodReRJc+QJSGlFKUaBVLk2gWR0C0xfVwkxATdX2UKGgGaAloD0MITptxGuJJckCUhpRSlGgVS/1oFkdAtMammdiDunV9lChoBmgJaA9DCNV5VPzfO3NAlIaUUpRoFUvQaBZHQLTG34Vymyh1fZQoaAZoCWgPQwhi9rLtNCxyQJSGlFKUaBVNegFoFkdAtMdQ+Y+jd3V9lChoBmgJaA9DCD6XqUmwO3BAlIaUUpRoFUvZaBZHQLTHi7EpAlh1fZQoaAZoCWgPQwj/PuPCwchyQJSGlFKUaBVL12gWR0C0yDHM6ij+dX2UKGgGaAloD0MImx9/adHwcECUhpRSlGgVTb0BaBZHQLTItfe1rqN1fZQoaAZoCWgPQwjU7lcBflRxQJSGlFKUaBVNSAFoFkdAtMkSvgWJrXV9lChoBmgJaA9DCJAxdy3hUHNAlIaUUpRoFUuwaBZHQLTJrOOsDGN1fZQoaAZoCWgPQwgcP1QasXNwQJSGlFKUaBVLzGgWR0C0yeRBeHBUdX2UKGgGaAloD0MIYf91bprMckCUhpRSlGgVS79oFkdAtMoZlQMx5HV9lChoBmgJaA9DCAte9BWkuXNAlIaUUpRoFUvAaBZHQLTKT5GjKxN1fZQoaAZoCWgPQwh5P26/PDxyQJSGlFKUaBVLymgWR0C0yoeL74zrdX2UKGgGaAloD0MIf/W4bzXtbkCUhpRSlGgVS8doFkdAtMsm+vhZQ3V9lChoBmgJaA9DCHO4VnvY2nJAlIaUUpRoFUvQaBZHQLTLYHH3lCF1fZQoaAZoCWgPQwhTliGOtd5xQJSGlFKUaBVLzWgWR0C0y5cJlar4dX2UKGgGaAloD0MI9uy5TM0jcUCUhpRSlGgVS8doFkdAtMvM3yZrpXV9lChoBmgJaA9DCJOKxtqfznFAlIaUUpRoFUvKaBZHQLTMBeb/ffp1fZQoaAZoCWgPQwjtgsE193dxQJSGlFKUaBVLu2gWR0C0zKWys0YTdX2UKGgGaAloD0MIsyRATe2pckCUhpRSlGgVS+FoFkdAtMzkk+otMHV9lChoBmgJaA9DCMe44uJoJnNAlIaUUpRoFUvRaBZHQLTNH2NvOyF1fZQoaAZoCWgPQwgQIa6cfeJwQJSGlFKUaBVL+WgWR0C0zWJe3QUpdX2UKGgGaAloD0MIOgfPhOYZckCUhpRSlGgVS9doFkdAtM2dNh3JP3V9lChoBmgJaA9DCMhCdAgcMnFAlIaUUpRoFUvfaBZHQLTORWY4Qz11fZQoaAZoCWgPQwjGFKxxdvhwQJSGlFKUaBVLtWgWR0C0znayv9tNdX2UKGgGaAloD0MIe7slOaAZcUCUhpRSlGgVS/BoFkdAtM66B7NSqHV9lChoBmgJaA9DCPORlPSwKHNAlIaUUpRoFUvAaBZHQLTO7s3Q2Mt1fZQoaAZoCWgPQwidZRah2FJzQJSGlFKUaBVLwGgWR0C0zySxzJZGdX2UKGgGaAloD0MI5urHJvmdS0CUhpRSlGgVS4xoFkdAtM+1mAbyY3V9lChoBmgJaA9DCPOv5ZVrAnJAlIaUUpRoFUvfaBZHQLTP8qH446x1fZQoaAZoCWgPQwiwWMNFLl1xQJSGlFKUaBVL0mgWR0C00C0hNdqtdX2UKGgGaAloD0MIqUvGMRJGcECUhpRSlGgVS8xoFkdAtNBibayrxXV9lChoBmgJaA9DCOZY3lWPznNAlIaUUpRoFUvHaBZHQLTQmoNutOp1fZQoaAZoCWgPQwhGJuDXyDNwQJSGlFKUaBVN5wNoFkdAtNJnn/1g6XV9lChoBmgJaA9DCOvIkc4AuXJAlIaUUpRoFUv/aBZHQLTTGZeAuqZ1fZQoaAZoCWgPQwjBc+/hEp9zQJSGlFKUaBVLyGgWR0C001BakhzOdX2UKGgGaAloD0MIRIgrZ++Yc0CUhpRSlGgVS9RoFkdAtNOLiPyTZHV9lChoBmgJaA9DCEAYeO49O2VAlIaUUpRoFU3oA2gWR0C01S1ea8YidX2UKGgGaAloD0MItOOG340rc0CUhpRSlGgVS8poFkdAtNVmc2BJ7XV9lChoBmgJaA9DCC5Tk+ANMnNAlIaUUpRoFUvUaBZHQLTVoF36hxp1fZQoaAZoCWgPQwgfZcQF4KNzQJSGlFKUaBVL12gWR0C01kXj2i+MdX2UKGgGaAloD0MIOpShKmaTcUCUhpRSlGgVS9ZoFkdAtNZ/rgOz6nV9lChoBmgJaA9DCOuQm+EGeGZAlIaUUpRoFU3oA2gWR0C02DrRWtEHdX2UKGgGaAloD0MI1UDzOfcUckCUhpRSlGgVS71oFkdAtNhvHq/ucHV9lChoBmgJaA9DCF9/Ep87flJAlIaUUpRoFUuqaBZHQLTYnQ8fV7R1fZQoaAZoCWgPQwioqWVrPZlxQJSGlFKUaBVNuAFoFkdAtNmN8pkPMHV9lChoBmgJaA9DCKeSAaCKk29AlIaUUpRoFUvRaBZHQLTZxsolUqB1fZQoaAZoCWgPQwjjGTT0D61yQJSGlFKUaBVL3WgWR0C02gP6fra/dX2UKGgGaAloD0MIQDOID2zvbkCUhpRSlGgVS75oFkdAtNo3R2KVIXV9lChoBmgJaA9DCH4czZGVi3JAlIaUUpRoFUvwaBZHQLTaelJYkmh1fZQoaAZoCWgPQwirCDcZFYhxQJSGlFKUaBVNFQFoFkdAtNszaTOgQHV9lChoBmgJaA9DCOdSXFX2I3BAlIaUUpRoFUvRaBZHQLTbbFxn3+N1fZQoaAZoCWgPQwhmoDL+/dNzQJSGlFKUaBVLymgWR0C026RdY4hmdX2UKGgGaAloD0MIQuigS7jxc0CUhpRSlGgVS+FoFkdAtNvh7gKnenV9lChoBmgJaA9DCDeOWIvPTHFAlIaUUpRoFUvAaBZHQLTcFs9SuQp1fZQoaAZoCWgPQwieB3dn7dlyQJSGlFKUaBVLy2gWR0C03LkJSiuddX2UKGgGaAloD0MIMLq8OdwLcECUhpRSlGgVS9loFkdAtNzz4VRDTnV9lChoBmgJaA9DCBWOIJUi23BAlIaUUpRoFUvUaBZHQLTdLNJe3QV1fZQoaAZoCWgPQwh5d2SsdqFyQJSGlFKUaBVLymgWR0C03WShi9ZidX2UKGgGaAloD0MImdamsT1vcECUhpRSlGgVS7doFkdAtN2WkFfReHV9lChoBmgJaA9DCERQNXp1zHJAlIaUUpRoFUvMaBZHQLTeOcJMQEp1fZQoaAZoCWgPQwgVqwZhLklyQJSGlFKUaBVL+2gWR0C03n+IEbHZdX2UKGgGaAloD0MIOul946tqc0CUhpRSlGgVS9doFkdAtN66jesPrnV9lChoBmgJaA9DCEnb+BOV0XFAlIaUUpRoFUvaaBZHQLTe+E4Nqg11fZQoaAZoCWgPQwg+IqZEEtRxQJSGlFKUaBVL22gWR0C0354X9BKMdX2UKGgGaAloD0MIZr/udCfzckCUhpRSlGgVS8xoFkdAtN/VyMkyDnV9lChoBmgJaA9DCFg4SfMH1HJAlIaUUpRoFUvaaBZHQLTgEVk+X7d1fZQoaAZoCWgPQwigppattRlxQJSGlFKUaBVLy2gWR0C04EluejEfdX2UKGgGaAloD0MINQcI5mgSb0CUhpRSlGgVS85oFkdAtOCCm8/Uv3V9lChoBmgJaA9DCNr/AGuVtXBAlIaUUpRoFUvjaBZHQLThKmNzbN91fZQoaAZoCWgPQwjiP91AwThyQJSGlFKUaBVLxWgWR0C04WCxA0KrdX2UKGgGaAloD0MI9Z81P74ZcECUhpRSlGgVS9xoFkdAtOGbI1cdHXV9lChoBmgJaA9DCCujkc9rP3NAlIaUUpRoFUu+aBZHQLThzzGPxQV1fZQoaAZoCWgPQwj7WSxF8pJyQJSGlFKUaBVL2GgWR0C04gxvFWGRdX2UKGgGaAloD0MIbm5MT1i5bkCUhpRSlGgVS8toFkdAtOKuiCaqj3V9lChoBmgJaA9DCIelgR8VP3JAlIaUUpRoFUvWaBZHQLTi6SGahHt1fZQoaAZoCWgPQwhm3T8WoshxQJSGlFKUaBVLvWgWR0C04x09dNWVdX2UKGgGaAloD0MI+kZ0z3pPcUCUhpRSlGgVS9poFkdAtONbSMLncXV9lChoBmgJaA9DCEuwOJy5TnBAlIaUUpRoFUvcaBZHQLTjmRVZLZl1fZQoaAZoCWgPQwicMGE0q1FxQJSGlFKUaBVLwWgWR0C05Dhri2lVdX2UKGgGaAloD0MIiEm4kEf9bkCUhpRSlGgVS/toFkdAtOR+4lQdj3V9lChoBmgJaA9DCFX5npEIAnBAlIaUUpRoFU0BAWgWR0C05Mr2L5ymdX2UKGgGaAloD0MIwvo/hzkycECUhpRSlGgVS91oFkdAtOUIUTL4e3V9lChoBmgJaA9DCLmq7Ltix3JAlIaUUpRoFUvbaBZHQLTlr9YOlO51fZQoaAZoCWgPQwigUE8fwbxwQJSGlFKUaBVL1GgWR0C05ej987ZGdX2UKGgGaAloD0MIrORjd0E/cUCUhpRSlGgVS+JoFkdAtOYn9fkWAXV9lChoBmgJaA9DCEQwDi7duHJAlIaUUpRoFUvkaBZHQLTmZ+RHPNV1fZQoaAZoCWgPQwgC9WbUPN9xQJSGlFKUaBVNJQFoFkdAtOa8KG+K0nV9lChoBmgJaA9DCOHwgojUUnJAlIaUUpRoFUvraBZHQLTnZ6LOzIF1fZQoaAZoCWgPQwj8Gd6sQcByQJSGlFKUaBVLv2gWR0C055xpg1FZdX2UKGgGaAloD0MITDWzlgI2ckCUhpRSlGgVS+9oFkdAtOfgTWXkYHV9lChoBmgJaA9DCJPjTungwW9AlIaUUpRoFUvmaBZHQLToIYUWVNZ1ZS4="
75
  },
76
  "ep_success_buffer": {
77
  ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
79
  },
80
+ "_n_updates": 11720,
81
  "n_steps": 1024,
82
  "gamma": 0.999,
83
  "gae_lambda": 0.98,
 
88
  "n_epochs": 4,
89
  "clip_range": {
90
  ":type:": "<class 'function'>",
91
+ ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL2hvbWUvYWdhcmNpYS9yZXBvcy9kZWVwLXJsLWNsYXNzL3VuaXQxL3VuaXQxL2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvaG9tZS9hZ2FyY2lhL3JlcG9zL2RlZXAtcmwtY2xhc3MvdW5pdDEvdW5pdDEvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
  },
93
  "clip_range_vf": null,
 
94
  "target_kl": null
95
  }
galeos_model_lander_ppo/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a53f7ad6b81e66183e21e2cc31b8cce90d0c29368e65baba167fccde177bea5e
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e192eaa4a61d95805d47e0524b4e3158b8be05c263aa82b3712535a93dc7dde2
3
+ size 84893
galeos_model_lander_ppo/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cf711d89d6be0e9d01de370ed561535db27fd56471b623dd8783eb9f48e0976b
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f70aad6a7d9e2b58c16e30aad21380e9c83c6a2e2a6e15baa6c0ea6b4f45a8a
3
  size 43201
galeos_model_lander_ppo/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
- Python: 3.7.13
3
- Stable-Baselines3: 1.5.0
4
- PyTorch: 1.11.0+cu113
5
  GPU Enabled: True
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
1
+ OS: Linux-4.15.0-180-generic-x86_64-with-Ubuntu-18.04-bionic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022
2
+ Python: 3.6.9
3
+ Stable-Baselines3: 1.3.0
4
+ PyTorch: 1.10.2+cu102
5
  GPU Enabled: True
6
+ Numpy: 1.19.5
7
+ Gym: 0.19.0
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 240.74417741730568, "std_reward": 25.828766472127473, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T19:11:39.039197"}
 
1
+ {"mean_reward": 276.6844665838818, "std_reward": 23.994863457176383, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-29T21:25:44.457497"}