File size: 2,305 Bytes
e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e e005a88 ce3e90e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5295
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0004 | 1.0 | 113 | 1.8623 | 0.39 |
| 1.3378 | 2.0 | 226 | 1.2327 | 0.62 |
| 0.9874 | 3.0 | 339 | 0.9539 | 0.78 |
| 0.7984 | 4.0 | 452 | 0.7968 | 0.77 |
| 0.5491 | 5.0 | 565 | 0.7040 | 0.79 |
| 0.3278 | 6.0 | 678 | 0.6850 | 0.75 |
| 0.4007 | 7.0 | 791 | 0.5304 | 0.81 |
| 0.1203 | 8.0 | 904 | 0.5527 | 0.83 |
| 0.267 | 9.0 | 1017 | 0.5332 | 0.85 |
| 0.1416 | 10.0 | 1130 | 0.5295 | 0.83 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
|