File size: 10,067 Bytes
81ae232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
language:
- de
tags:
- question-generation
- german
- text2text-generation
- generated_from_trainer
datasets:
- lmqg/qg_dequad
metrics:
- bleu4
- f1
- rouge
- exact_match
model-index:
- name: german-jeopardy-mt5-base
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU-4
type: bleu4
value: 14.56
- name: F1
type: f1
value: 39.53
- name: ROUGE-1
type: rouge1
value: 40.62
- name: ROUGE-2
type: rouge2
value: 21.49
- name: ROUGE-L
type: rougel
value: 39.14
- name: ROUGE-Lsum
type: rougelsum
value: 39.13
- name: Exact Match
type: exact_match
value: 2.72
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-jeopardy-mt5-base
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.66
- Brevity Penalty: 0.9025
- System Length: 18860
- Reference Length: 20793
- ROUGE-1: 40.62
- ROUGE-2: 21.49
- ROUGE-L: 39.14
- ROUGE-Lsum: 39.13
- Exact Match: 2.72
- BLEU: 14.56
- F1: 39.53
## Model description
See [google/mt5-base](https://huggingface.co/google/mt5-base) for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.
## Intended uses & limitations
This model can be used for question generation on German text.
## Training and evaluation data
See [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad).
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 7
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adafactor
- lr_scheduler_type: constant
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Counts 1 | Counts 2 | Counts 3 | Counts 4 | Totals 1 | Totals 2 | Totals 3 | Totals 4 | Precisions 1 | Precisions 2 | Precisions 3 | Precisions 4 | Brevity Penalty | System Length | Reference Length | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | Exact Match | BLEU | Mean Generated Length | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:----------------:|:-------:|:-------:|:-------:|:----------:|:-----------:|:-------:|:---------------------:|:------:|
| 5.5131 | 1.0 | 145 | 1.8698 | 6032 | 1668 | 626 | 216 | 16023 | 13819 | 11615 | 9411 | 37.6459 | 12.0703 | 5.3896 | 2.2952 | 0.7216 | 16023 | 21250 | 0.2485 | 0.1011 | 0.2368 | 0.2366 | 0.0018 | 6.2485 | 12.6166 | 0.2406 |
| 2.3946 | 2.0 | 291 | 1.5888 | 7325 | 2554 | 1178 | 558 | 16853 | 14649 | 12445 | 10241 | 43.4641 | 17.4346 | 9.4656 | 5.4487 | 0.7704 | 16853 | 21250 | 0.3226 | 0.1585 | 0.31 | 0.31 | 0.0145 | 10.8315 | 12.2582 | 0.3148 |
| 2.0101 | 3.0 | 436 | 1.4997 | 7623 | 2764 | 1304 | 629 | 17042 | 14838 | 12634 | 10430 | 44.7307 | 18.6278 | 10.3214 | 6.0307 | 0.7812 | 17042 | 21250 | 0.3403 | 0.1723 | 0.3263 | 0.3263 | 0.0154 | 11.7891 | 12.6783 | 0.3315 |
| 1.8073 | 4.0 | 582 | 1.4610 | 7728 | 2916 | 1415 | 707 | 16654 | 14450 | 12246 | 10042 | 46.4033 | 20.1799 | 11.5548 | 7.0404 | 0.7588 | 16654 | 21250 | 0.3461 | 0.1818 | 0.3324 | 0.3326 | 0.0168 | 12.6068 | 12.2963 | 0.3387 |
| 1.6851 | 4.99 | 727 | 1.4357 | 7964 | 3059 | 1483 | 727 | 17381 | 15177 | 12973 | 10769 | 45.8201 | 20.1555 | 11.4314 | 6.7509 | 0.8004 | 17381 | 21250 | 0.3558 | 0.1888 | 0.3415 | 0.3414 | 0.0159 | 13.0784 | 12.7436 | 0.3483 |
| 1.5642 | 6.0 | 873 | 1.4003 | 8299 | 3224 | 1592 | 788 | 17351 | 15147 | 12943 | 10739 | 47.8301 | 21.2847 | 12.3001 | 7.3377 | 0.7987 | 17351 | 21250 | 0.3814 | 0.2025 | 0.3684 | 0.3685 | 0.0204 | 13.9065 | 12.9569 | 0.3736 |
| 1.4756 | 6.99 | 1018 | 1.3779 | 8640 | 3430 | 1712 | 879 | 17669 | 15465 | 13261 | 11057 | 48.8992 | 22.1791 | 12.91 | 7.9497 | 0.8165 | 17669 | 21250 | 0.3971 | 0.2133 | 0.3828 | 0.3826 | 0.025 | 14.9146 | 13.1084 | 0.3892 |
| 1.3792 | 8.0 | 1164 | 1.3624 | 8732 | 3417 | 1712 | 871 | 17996 | 15792 | 13588 | 11384 | 48.5219 | 21.6375 | 12.5994 | 7.6511 | 0.8346 | 17996 | 21250 | 0.4003 | 0.2131 | 0.3852 | 0.3849 | 0.0245 | 14.8859 | 13.3748 | 0.3917 |
| 1.3133 | 9.0 | 1310 | 1.3630 | 8804 | 3500 | 1754 | 920 | 17661 | 15457 | 13253 | 11049 | 49.85 | 22.6435 | 13.2347 | 8.3265 | 0.8161 | 17661 | 21250 | 0.4078 | 0.219 | 0.3932 | 0.3935 | 0.025 | 15.3264 | 13.2019 | 0.4 |
| 1.261 | 10.0 | 1455 | 1.3685 | 8910 | 3602 | 1849 | 1000 | 17709 | 15505 | 13301 | 11097 | 50.3134 | 23.2312 | 13.9012 | 9.0114 | 0.8188 | 17709 | 21250 | 0.4135 | 0.223 | 0.3991 | 0.3992 | 0.0295 | 16.0163 | 13.1892 | 0.4055 |
| 1.1897 | 11.0 | 1601 | 1.3639 | 9096 | 3690 | 1902 | 1012 | 18261 | 16057 | 13853 | 11649 | 49.8111 | 22.9806 | 13.7299 | 8.6874 | 0.849 | 18261 | 21250 | 0.4201 | 0.2289 | 0.4059 | 0.4057 | 0.0281 | 16.3202 | 13.5077 | 0.4121 |
| 1.1453 | 11.99 | 1746 | 1.3610 | 9106 | 3735 | 1932 | 1023 | 18329 | 16125 | 13921 | 11717 | 49.6808 | 23.1628 | 13.8783 | 8.7309 | 0.8527 | 18329 | 21250 | 0.4173 | 0.2303 | 0.4026 | 0.4025 | 0.0281 | 16.4772 | 13.8013 | 0.4099 |
| 1.0858 | 13.0 | 1892 | 1.3716 | 9245 | 3778 | 1955 | 1049 | 18556 | 16352 | 14148 | 11944 | 49.8222 | 23.1042 | 13.8182 | 8.7827 | 0.8649 | 18556 | 21250 | 0.4244 | 0.2327 | 0.409 | 0.409 | 0.0322 | 16.7204 | 13.8144 | 0.417 |
| 1.0472 | 13.99 | 2037 | 1.3770 | 9166 | 3756 | 1946 | 1054 | 18315 | 16111 | 13907 | 11703 | 50.0464 | 23.3133 | 13.993 | 9.0062 | 0.8519 | 18315 | 21250 | 0.4216 | 0.2311 | 0.4068 | 0.4067 | 0.0309 | 16.6825 | 13.8099 | 0.4143 |
| 0.9953 | 15.0 | 2183 | 1.3881 | 9342 | 3926 | 2046 | 1108 | 18132 | 15928 | 13724 | 11520 | 51.5222 | 24.6484 | 14.9082 | 9.6181 | 0.842 | 18132 | 21250 | 0.4328 | 0.2418 | 0.4171 | 0.4171 | 0.0327 | 17.3937 | 13.5023 | 0.4258 |
| 0.9509 | 16.0 | 2329 | 1.4016 | 9330 | 3894 | 2024 | 1084 | 18672 | 16468 | 14264 | 12060 | 49.9679 | 23.6459 | 14.1896 | 8.9884 | 0.871 | 18672 | 21250 | 0.4269 | 0.237 | 0.4123 | 0.4122 | 0.0313 | 17.1618 | 13.956 | 0.4198 |
| 0.9183 | 17.0 | 2474 | 1.4152 | 9303 | 3824 | 1979 | 1084 | 18476 | 16272 | 14068 | 11864 | 50.3518 | 23.5005 | 14.0674 | 9.1369 | 0.8606 | 18476 | 21250 | 0.4269 | 0.2345 | 0.4121 | 0.4122 | 0.0327 | 16.995 | 13.7854 | 0.4199 |
| 0.8696 | 18.0 | 2620 | 1.4404 | 9184 | 3798 | 1993 | 1085 | 18379 | 16175 | 13971 | 11767 | 49.9701 | 23.4807 | 14.2653 | 9.2207 | 0.8554 | 18379 | 21250 | 0.4218 | 0.2333 | 0.4076 | 0.4074 | 0.034 | 16.9541 | 13.726 | 0.4148 |
| 0.8389 | 19.0 | 2765 | 1.4360 | 9476 | 4000 | 2092 | 1139 | 19003 | 16799 | 14595 | 12391 | 49.8658 | 23.8109 | 14.3337 | 9.1922 | 0.8885 | 19003 | 21250 | 0.4307 | 0.2406 | 0.4161 | 0.416 | 0.0299 | 17.67 | 14.2064 | 0.4239 |
| 0.7993 | 19.92 | 2900 | 1.4545 | 9464 | 3970 | 2078 | 1126 | 18741 | 16537 | 14333 | 12129 | 50.4989 | 24.0068 | 14.498 | 9.2835 | 0.8747 | 18741 | 21250 | 0.4349 | 0.2424 | 0.4194 | 0.4192 | 0.0327 | 17.5799 | 13.9959 | 0.4269 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|