File size: 22,196 Bytes
c2ced9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import math
from dataclasses import dataclass
from numbers import Number
from typing import NamedTuple, Tuple, Union

import numpy as np
import torch as th
from torch import nn
import torch.nn.functional as F
from .DiffAE_support_choices import *
from .DiffAE_support_config_base import BaseConfig
from .DiffAE_model_blocks import *

from .DiffAE_model_nn import (conv_nd, linear, normalization, timestep_embedding,
                 torch_checkpoint, zero_module)


@dataclass
class BeatGANsUNetConfig(BaseConfig):
    image_size: int = 64
    in_channels: int = 3
    # base channels, will be multiplied
    model_channels: int = 64
    # output of the unet
    # suggest: 3
    # you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3)
    out_channels: int = 3
    # how many repeating resblocks per resolution
    # the decoding side would have "one more" resblock
    # default: 2
    num_res_blocks: int = 2
    # you can also set the number of resblocks specifically for the input blocks
    # default: None = above
    num_input_res_blocks: int = None
    # number of time embed channels and style channels
    embed_channels: int = 512
    # at what resolutions you want to do self-attention of the feature maps
    # attentions generally improve performance
    # default: [16]
    # beatgans: [32, 16, 8]
    attention_resolutions: Tuple[int] = (16, )
    # number of time embed channels
    time_embed_channels: int = None
    # dropout applies to the resblocks (on feature maps)
    dropout: float = 0.1
    channel_mult: Tuple[int] = (1, 2, 4, 8)
    input_channel_mult: Tuple[int] = None
    conv_resample: bool = True
    group_norm_limit: int = 32
    # always 2 = 2d conv
    dims: int = 2
    # don't use this, legacy from BeatGANs
    num_classes: int = None
    use_checkpoint: bool = False
    # number of attention heads
    num_heads: int = 1
    # or specify the number of channels per attention head
    num_head_channels: int = -1
    # what's this?
    num_heads_upsample: int = -1
    # use resblock for upscale/downscale blocks (expensive)
    # default: True (BeatGANs)
    resblock_updown: bool = True
    # never tried
    use_new_attention_order: bool = False
    resnet_two_cond: bool = False
    resnet_cond_channels: int = None
    # init the decoding conv layers with zero weights, this speeds up training
    # default: True (BeattGANs)
    resnet_use_zero_module: bool = True
    # gradient checkpoint the attention operation
    attn_checkpoint: bool = False

    def make_model(self):
        return BeatGANsUNetModel(self)


class BeatGANsUNetModel(nn.Module):
    def __init__(self, conf: BeatGANsUNetConfig):
        super().__init__()
        self.conf = conf

        if conf.num_heads_upsample == -1:
            self.num_heads_upsample = conf.num_heads

        self.dtype = th.float32

        self.time_emb_channels = conf.time_embed_channels or conf.model_channels
        self.time_embed = nn.Sequential(
            linear(self.time_emb_channels, conf.embed_channels),
            nn.SiLU(),
            linear(conf.embed_channels, conf.embed_channels),
        )

        if conf.num_classes is not None:
            self.label_emb = nn.Embedding(conf.num_classes,
                                          conf.embed_channels)

        ch = input_ch = int(conf.channel_mult[0] * conf.model_channels)
        self.input_blocks = nn.ModuleList([
            TimestepEmbedSequential(
                conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
        ])

        kwargs = dict(
            use_condition=True,
            two_cond=conf.resnet_two_cond,
            use_zero_module=conf.resnet_use_zero_module,
            # style channels for the resnet block
            cond_emb_channels=conf.resnet_cond_channels,
        )

        self._feature_size = ch

        # input_block_chans = [ch]
        input_block_chans = [[] for _ in range(len(conf.channel_mult))]
        input_block_chans[0].append(ch)

        # number of blocks at each resolution
        self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))]
        self.input_num_blocks[0] = 1
        self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))]

        ds = 1
        resolution = conf.image_size
        for level, mult in enumerate(conf.input_channel_mult
                                     or conf.channel_mult):
            for _ in range(conf.num_input_res_blocks or conf.num_res_blocks):
                layers = [
                    ResBlockConfig(
                        ch,
                        conf.embed_channels,
                        conf.dropout,
                        out_channels=int(mult * conf.model_channels),
                        group_norm_limit=conf.group_norm_limit,
                        dims=conf.dims,
                        use_checkpoint=conf.use_checkpoint,
                        **kwargs,
                    ).make_model()
                ]
                ch = int(mult * conf.model_channels)
                if resolution in conf.attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=conf.use_checkpoint
                            or conf.attn_checkpoint,
                            num_heads=conf.num_heads,
                            num_head_channels=conf.num_head_channels,
                            group_norm_limit=conf.group_norm_limit,
                            use_new_attention_order=conf.
                            use_new_attention_order,
                        ))
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                # input_block_chans.append(ch)
                input_block_chans[level].append(ch)
                self.input_num_blocks[level] += 1
                # print(input_block_chans)
            if level != len(conf.channel_mult) - 1:
                resolution //= 2
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlockConfig(
                            ch,
                            conf.embed_channels,
                            conf.dropout,
                            out_channels=out_ch,
                            group_norm_limit=conf.group_norm_limit,
                            dims=conf.dims,
                            use_checkpoint=conf.use_checkpoint,
                            down=True,
                            **kwargs,
                        ).make_model() if conf.
                        resblock_updown else Downsample(ch,
                                                        conf.conv_resample,
                                                        dims=conf.dims,
                                                        out_channels=out_ch)))
                ch = out_ch
                # input_block_chans.append(ch)
                input_block_chans[level + 1].append(ch)
                self.input_num_blocks[level + 1] += 1
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlockConfig(
                ch,
                conf.embed_channels,
                conf.dropout,
                group_norm_limit=conf.group_norm_limit,
                dims=conf.dims,
                use_checkpoint=conf.use_checkpoint,
                **kwargs,
            ).make_model(),
            AttentionBlock(
                ch,
                use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint,
                num_heads=conf.num_heads,
                num_head_channels=conf.num_head_channels,
                group_norm_limit=conf.group_norm_limit,
                use_new_attention_order=conf.use_new_attention_order,
            ),
            ResBlockConfig(
                ch,
                conf.embed_channels,
                conf.dropout,
                group_norm_limit=conf.group_norm_limit,
                dims=conf.dims,
                use_checkpoint=conf.use_checkpoint,
                **kwargs,
            ).make_model(),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(conf.channel_mult))[::-1]:
            for i in range(conf.num_res_blocks + 1):
                # print(input_block_chans)
                # ich = input_block_chans.pop()
                try:
                    ich = input_block_chans[level].pop()
                except IndexError:
                    # this happens only when num_res_block > num_enc_res_block
                    # we will not have enough lateral (skip) connecions for all decoder blocks
                    ich = 0
                # print('pop:', ich)
                layers = [
                    ResBlockConfig(
                        # only direct channels when gated
                        channels=ch + ich,
                        emb_channels=conf.embed_channels,
                        dropout=conf.dropout,
                        out_channels=int(conf.model_channels * mult),                        
                        group_norm_limit=conf.group_norm_limit,
                        dims=conf.dims,
                        use_checkpoint=conf.use_checkpoint,
                        # lateral channels are described here when gated
                        has_lateral=True if ich > 0 else False,
                        lateral_channels=None,
                        **kwargs,
                    ).make_model()
                ]
                ch = int(conf.model_channels * mult)
                if resolution in conf.attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=conf.use_checkpoint
                            or conf.attn_checkpoint,
                            num_heads=self.num_heads_upsample,
                            num_head_channels=conf.num_head_channels,
                            group_norm_limit=conf.group_norm_limit,
                            use_new_attention_order=conf.
                            use_new_attention_order,
                        ))
                if level and i == conf.num_res_blocks:
                    resolution *= 2
                    out_ch = ch
                    layers.append(
                        ResBlockConfig(
                            ch,
                            conf.embed_channels,
                            conf.dropout,
                            out_channels=out_ch,
                            group_norm_limit=conf.group_norm_limit,
                            dims=conf.dims,
                            use_checkpoint=conf.use_checkpoint,
                            up=True,
                            **kwargs,
                        ).make_model() if (
                            conf.resblock_updown
                        ) else Upsample(ch,
                                        conf.conv_resample,
                                        dims=conf.dims,
                                        out_channels=out_ch))
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self.output_num_blocks[level] += 1
                self._feature_size += ch

        # print(input_block_chans)
        # print('inputs:', self.input_num_blocks)
        # print('outputs:', self.output_num_blocks)

        if conf.resnet_use_zero_module:
            self.out = nn.Sequential(
                normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
                nn.SiLU(),
                zero_module(
                    conv_nd(conf.dims,
                            input_ch,
                            conf.out_channels,
                            3,
                            padding=1)),
            )
        else:
            self.out = nn.Sequential(
                normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
                nn.SiLU(),
                conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1),
            )

    def forward(self, x, t, y=None, **kwargs):
        """
        Apply the model to an input batch.

        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
        assert (y is not None) == (
            self.conf.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"

        # hs = []
        hs = [[] for _ in range(len(self.conf.channel_mult))]
        emb = self.time_embed(timestep_embedding(t, self.time_emb_channels))

        if self.conf.num_classes is not None:
            raise NotImplementedError()
            # assert y.shape == (x.shape[0], )
            # emb = emb + self.label_emb(y)

        # new code supports input_num_blocks != output_num_blocks
        h = x.type(self.dtype)
        k = 0
        for i in range(len(self.input_num_blocks)):
            for j in range(self.input_num_blocks[i]):
                h = self.input_blocks[k](h, emb=emb)
                # print(i, j, h.shape)
                hs[i].append(h)
                k += 1
        assert k == len(self.input_blocks)

        h = self.middle_block(h, emb=emb)
        k = 0
        for i in range(len(self.output_num_blocks)):
            for j in range(self.output_num_blocks[i]):
                # take the lateral connection from the same layer (in reserve)
                # until there is no more, use None
                try:
                    lateral = hs[-i - 1].pop()
                    # print(i, j, lateral.shape)
                except IndexError:
                    lateral = None
                    # print(i, j, lateral)
                h = self.output_blocks[k](h, emb=emb, lateral=lateral)
                k += 1

        h = h.type(x.dtype)
        pred = self.out(h)
        return Return(pred=pred)


class Return(NamedTuple):
    pred: th.Tensor


@dataclass
class BeatGANsEncoderConfig(BaseConfig):
    image_size: int
    in_channels: int
    model_channels: int
    out_hid_channels: int
    out_channels: int
    num_res_blocks: int
    attention_resolutions: Tuple[int]
    dropout: float = 0
    channel_mult: Tuple[int] = (1, 2, 4, 8)
    use_time_condition: bool = True
    conv_resample: bool = True
    group_norm_limit: int = 32
    dims: int = 2
    use_checkpoint: bool = False
    num_heads: int = 1
    num_head_channels: int = -1
    resblock_updown: bool = False
    use_new_attention_order: bool = False
    pool: str = 'adaptivenonzero'

    def make_model(self):
        return BeatGANsEncoderModel(self)


class BeatGANsEncoderModel(nn.Module):
    """
    The half UNet model with attention and timestep embedding.

    For usage, see UNet.
    """
    def __init__(self, conf: BeatGANsEncoderConfig):
        super().__init__()
        self.conf = conf
        self.dtype = th.float32

        if conf.use_time_condition:
            time_embed_dim = conf.model_channels * 4
            self.time_embed = nn.Sequential(
                linear(conf.model_channels, time_embed_dim),
                nn.SiLU(),
                linear(time_embed_dim, time_embed_dim),
            )
        else:
            time_embed_dim = None

        ch = int(conf.channel_mult[0] * conf.model_channels)
        self.input_blocks = nn.ModuleList([
            TimestepEmbedSequential(
                conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
        ])
        self._feature_size = ch
        input_block_chans = [ch]
        ds = 1
        resolution = conf.image_size
        for level, mult in enumerate(conf.channel_mult):
            for _ in range(conf.num_res_blocks):
                layers = [
                    ResBlockConfig(
                        ch,
                        time_embed_dim,
                        conf.dropout,
                        out_channels=int(mult * conf.model_channels),
                        group_norm_limit=conf.group_norm_limit,
                        dims=conf.dims,
                        use_condition=conf.use_time_condition,
                        use_checkpoint=conf.use_checkpoint,
                    ).make_model()
                ]
                ch = int(mult * conf.model_channels)
                if resolution in conf.attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=conf.use_checkpoint,
                            num_heads=conf.num_heads,
                            num_head_channels=conf.num_head_channels,
                            group_norm_limit=conf.group_norm_limit,
                            use_new_attention_order=conf.
                            use_new_attention_order,
                        ))
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(conf.channel_mult) - 1:
                resolution //= 2
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlockConfig(
                            ch,
                            time_embed_dim,
                            conf.dropout,
                            out_channels=out_ch,                            
                            group_norm_limit=conf.group_norm_limit,
                            dims=conf.dims,
                            use_condition=conf.use_time_condition,
                            use_checkpoint=conf.use_checkpoint,
                            down=True,
                        ).make_model() if (
                            conf.resblock_updown
                        ) else Downsample(ch,
                                          conf.conv_resample,
                                          dims=conf.dims,
                                          out_channels=out_ch)))
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlockConfig(
                ch,
                time_embed_dim,
                conf.dropout,
                group_norm_limit=conf.group_norm_limit,
                dims=conf.dims,
                use_condition=conf.use_time_condition,
                use_checkpoint=conf.use_checkpoint,
            ).make_model(),
            AttentionBlock(
                ch,
                use_checkpoint=conf.use_checkpoint,
                num_heads=conf.num_heads,
                num_head_channels=conf.num_head_channels,
                group_norm_limit=conf.group_norm_limit,
                use_new_attention_order=conf.use_new_attention_order,
            ),
            ResBlockConfig(
                ch,
                time_embed_dim,
                conf.dropout,
                group_norm_limit=conf.group_norm_limit,
                dims=conf.dims,
                use_condition=conf.use_time_condition,
                use_checkpoint=conf.use_checkpoint,
            ).make_model(),
        )
        self._feature_size += ch
        if conf.pool == "adaptivenonzero":
            self.out = nn.Sequential(
                normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
                nn.SiLU(),
                nn.AdaptiveAvgPool2d((1, 1)) if conf.dims == 2 else nn.AdaptiveAvgPool3d((1, 1, 1)),
                conv_nd(conf.dims, ch, conf.out_channels, 1),
                nn.Flatten(),
            )
        else:
            raise NotImplementedError(f"Unexpected {conf.pool} pooling")

    def forward(self, x, t=None, return_Nd_feature=False):
        """
        Apply the model to an input batch.

        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :return: an [N x K] Tensor of outputs.
        """
        if self.conf.use_time_condition:
            emb = self.time_embed(timestep_embedding(t, self.model_channels))
        else:
            emb = None

        results = []
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb=emb)
            if self.conf.pool.startswith("spatial"):
                results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
        h = self.middle_block(h, emb=emb)
        if self.conf.pool.startswith("spatial"):
            results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
            h = th.cat(results, axis=-1)
        else:
            h = h.type(x.dtype)

        h_Nd = h
        h = self.out(h)

        if return_Nd_feature:
            return h, h_Nd
        else:
            return h

    def forward_flatten(self, x):
        """
        transform the last Nd feature into a flatten vector
        """
        h = self.out(x)
        return h


class SuperResModel(BeatGANsUNetModel):
    """
    A UNetModel that performs super-resolution.

    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """
    def __init__(self, image_size, in_channels, *args, **kwargs):
        super().__init__(image_size, in_channels * 2, *args, **kwargs)

    def forward(self, x, timesteps, low_res=None, **kwargs):
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(low_res, (new_height, new_width),
                                  mode="bilinear")
        x = th.cat([x, upsampled], dim=1)
        return super().forward(x, timesteps, **kwargs)