File size: 22,196 Bytes
c2ced9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import math
from dataclasses import dataclass
from numbers import Number
from typing import NamedTuple, Tuple, Union
import numpy as np
import torch as th
from torch import nn
import torch.nn.functional as F
from .DiffAE_support_choices import *
from .DiffAE_support_config_base import BaseConfig
from .DiffAE_model_blocks import *
from .DiffAE_model_nn import (conv_nd, linear, normalization, timestep_embedding,
torch_checkpoint, zero_module)
@dataclass
class BeatGANsUNetConfig(BaseConfig):
image_size: int = 64
in_channels: int = 3
# base channels, will be multiplied
model_channels: int = 64
# output of the unet
# suggest: 3
# you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3)
out_channels: int = 3
# how many repeating resblocks per resolution
# the decoding side would have "one more" resblock
# default: 2
num_res_blocks: int = 2
# you can also set the number of resblocks specifically for the input blocks
# default: None = above
num_input_res_blocks: int = None
# number of time embed channels and style channels
embed_channels: int = 512
# at what resolutions you want to do self-attention of the feature maps
# attentions generally improve performance
# default: [16]
# beatgans: [32, 16, 8]
attention_resolutions: Tuple[int] = (16, )
# number of time embed channels
time_embed_channels: int = None
# dropout applies to the resblocks (on feature maps)
dropout: float = 0.1
channel_mult: Tuple[int] = (1, 2, 4, 8)
input_channel_mult: Tuple[int] = None
conv_resample: bool = True
group_norm_limit: int = 32
# always 2 = 2d conv
dims: int = 2
# don't use this, legacy from BeatGANs
num_classes: int = None
use_checkpoint: bool = False
# number of attention heads
num_heads: int = 1
# or specify the number of channels per attention head
num_head_channels: int = -1
# what's this?
num_heads_upsample: int = -1
# use resblock for upscale/downscale blocks (expensive)
# default: True (BeatGANs)
resblock_updown: bool = True
# never tried
use_new_attention_order: bool = False
resnet_two_cond: bool = False
resnet_cond_channels: int = None
# init the decoding conv layers with zero weights, this speeds up training
# default: True (BeattGANs)
resnet_use_zero_module: bool = True
# gradient checkpoint the attention operation
attn_checkpoint: bool = False
def make_model(self):
return BeatGANsUNetModel(self)
class BeatGANsUNetModel(nn.Module):
def __init__(self, conf: BeatGANsUNetConfig):
super().__init__()
self.conf = conf
if conf.num_heads_upsample == -1:
self.num_heads_upsample = conf.num_heads
self.dtype = th.float32
self.time_emb_channels = conf.time_embed_channels or conf.model_channels
self.time_embed = nn.Sequential(
linear(self.time_emb_channels, conf.embed_channels),
nn.SiLU(),
linear(conf.embed_channels, conf.embed_channels),
)
if conf.num_classes is not None:
self.label_emb = nn.Embedding(conf.num_classes,
conf.embed_channels)
ch = input_ch = int(conf.channel_mult[0] * conf.model_channels)
self.input_blocks = nn.ModuleList([
TimestepEmbedSequential(
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
])
kwargs = dict(
use_condition=True,
two_cond=conf.resnet_two_cond,
use_zero_module=conf.resnet_use_zero_module,
# style channels for the resnet block
cond_emb_channels=conf.resnet_cond_channels,
)
self._feature_size = ch
# input_block_chans = [ch]
input_block_chans = [[] for _ in range(len(conf.channel_mult))]
input_block_chans[0].append(ch)
# number of blocks at each resolution
self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))]
self.input_num_blocks[0] = 1
self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))]
ds = 1
resolution = conf.image_size
for level, mult in enumerate(conf.input_channel_mult
or conf.channel_mult):
for _ in range(conf.num_input_res_blocks or conf.num_res_blocks):
layers = [
ResBlockConfig(
ch,
conf.embed_channels,
conf.dropout,
out_channels=int(mult * conf.model_channels),
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
**kwargs,
).make_model()
]
ch = int(mult * conf.model_channels)
if resolution in conf.attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=conf.use_checkpoint
or conf.attn_checkpoint,
num_heads=conf.num_heads,
num_head_channels=conf.num_head_channels,
group_norm_limit=conf.group_norm_limit,
use_new_attention_order=conf.
use_new_attention_order,
))
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
# input_block_chans.append(ch)
input_block_chans[level].append(ch)
self.input_num_blocks[level] += 1
# print(input_block_chans)
if level != len(conf.channel_mult) - 1:
resolution //= 2
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlockConfig(
ch,
conf.embed_channels,
conf.dropout,
out_channels=out_ch,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
down=True,
**kwargs,
).make_model() if conf.
resblock_updown else Downsample(ch,
conf.conv_resample,
dims=conf.dims,
out_channels=out_ch)))
ch = out_ch
# input_block_chans.append(ch)
input_block_chans[level + 1].append(ch)
self.input_num_blocks[level + 1] += 1
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
ResBlockConfig(
ch,
conf.embed_channels,
conf.dropout,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
**kwargs,
).make_model(),
AttentionBlock(
ch,
use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint,
num_heads=conf.num_heads,
num_head_channels=conf.num_head_channels,
group_norm_limit=conf.group_norm_limit,
use_new_attention_order=conf.use_new_attention_order,
),
ResBlockConfig(
ch,
conf.embed_channels,
conf.dropout,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
**kwargs,
).make_model(),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(conf.channel_mult))[::-1]:
for i in range(conf.num_res_blocks + 1):
# print(input_block_chans)
# ich = input_block_chans.pop()
try:
ich = input_block_chans[level].pop()
except IndexError:
# this happens only when num_res_block > num_enc_res_block
# we will not have enough lateral (skip) connecions for all decoder blocks
ich = 0
# print('pop:', ich)
layers = [
ResBlockConfig(
# only direct channels when gated
channels=ch + ich,
emb_channels=conf.embed_channels,
dropout=conf.dropout,
out_channels=int(conf.model_channels * mult),
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
# lateral channels are described here when gated
has_lateral=True if ich > 0 else False,
lateral_channels=None,
**kwargs,
).make_model()
]
ch = int(conf.model_channels * mult)
if resolution in conf.attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=conf.use_checkpoint
or conf.attn_checkpoint,
num_heads=self.num_heads_upsample,
num_head_channels=conf.num_head_channels,
group_norm_limit=conf.group_norm_limit,
use_new_attention_order=conf.
use_new_attention_order,
))
if level and i == conf.num_res_blocks:
resolution *= 2
out_ch = ch
layers.append(
ResBlockConfig(
ch,
conf.embed_channels,
conf.dropout,
out_channels=out_ch,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_checkpoint=conf.use_checkpoint,
up=True,
**kwargs,
).make_model() if (
conf.resblock_updown
) else Upsample(ch,
conf.conv_resample,
dims=conf.dims,
out_channels=out_ch))
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self.output_num_blocks[level] += 1
self._feature_size += ch
# print(input_block_chans)
# print('inputs:', self.input_num_blocks)
# print('outputs:', self.output_num_blocks)
if conf.resnet_use_zero_module:
self.out = nn.Sequential(
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
nn.SiLU(),
zero_module(
conv_nd(conf.dims,
input_ch,
conf.out_channels,
3,
padding=1)),
)
else:
self.out = nn.Sequential(
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
nn.SiLU(),
conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1),
)
def forward(self, x, t, y=None, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.conf.num_classes is not None
), "must specify y if and only if the model is class-conditional"
# hs = []
hs = [[] for _ in range(len(self.conf.channel_mult))]
emb = self.time_embed(timestep_embedding(t, self.time_emb_channels))
if self.conf.num_classes is not None:
raise NotImplementedError()
# assert y.shape == (x.shape[0], )
# emb = emb + self.label_emb(y)
# new code supports input_num_blocks != output_num_blocks
h = x.type(self.dtype)
k = 0
for i in range(len(self.input_num_blocks)):
for j in range(self.input_num_blocks[i]):
h = self.input_blocks[k](h, emb=emb)
# print(i, j, h.shape)
hs[i].append(h)
k += 1
assert k == len(self.input_blocks)
h = self.middle_block(h, emb=emb)
k = 0
for i in range(len(self.output_num_blocks)):
for j in range(self.output_num_blocks[i]):
# take the lateral connection from the same layer (in reserve)
# until there is no more, use None
try:
lateral = hs[-i - 1].pop()
# print(i, j, lateral.shape)
except IndexError:
lateral = None
# print(i, j, lateral)
h = self.output_blocks[k](h, emb=emb, lateral=lateral)
k += 1
h = h.type(x.dtype)
pred = self.out(h)
return Return(pred=pred)
class Return(NamedTuple):
pred: th.Tensor
@dataclass
class BeatGANsEncoderConfig(BaseConfig):
image_size: int
in_channels: int
model_channels: int
out_hid_channels: int
out_channels: int
num_res_blocks: int
attention_resolutions: Tuple[int]
dropout: float = 0
channel_mult: Tuple[int] = (1, 2, 4, 8)
use_time_condition: bool = True
conv_resample: bool = True
group_norm_limit: int = 32
dims: int = 2
use_checkpoint: bool = False
num_heads: int = 1
num_head_channels: int = -1
resblock_updown: bool = False
use_new_attention_order: bool = False
pool: str = 'adaptivenonzero'
def make_model(self):
return BeatGANsEncoderModel(self)
class BeatGANsEncoderModel(nn.Module):
"""
The half UNet model with attention and timestep embedding.
For usage, see UNet.
"""
def __init__(self, conf: BeatGANsEncoderConfig):
super().__init__()
self.conf = conf
self.dtype = th.float32
if conf.use_time_condition:
time_embed_dim = conf.model_channels * 4
self.time_embed = nn.Sequential(
linear(conf.model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
else:
time_embed_dim = None
ch = int(conf.channel_mult[0] * conf.model_channels)
self.input_blocks = nn.ModuleList([
TimestepEmbedSequential(
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
])
self._feature_size = ch
input_block_chans = [ch]
ds = 1
resolution = conf.image_size
for level, mult in enumerate(conf.channel_mult):
for _ in range(conf.num_res_blocks):
layers = [
ResBlockConfig(
ch,
time_embed_dim,
conf.dropout,
out_channels=int(mult * conf.model_channels),
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_condition=conf.use_time_condition,
use_checkpoint=conf.use_checkpoint,
).make_model()
]
ch = int(mult * conf.model_channels)
if resolution in conf.attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=conf.use_checkpoint,
num_heads=conf.num_heads,
num_head_channels=conf.num_head_channels,
group_norm_limit=conf.group_norm_limit,
use_new_attention_order=conf.
use_new_attention_order,
))
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(conf.channel_mult) - 1:
resolution //= 2
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlockConfig(
ch,
time_embed_dim,
conf.dropout,
out_channels=out_ch,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_condition=conf.use_time_condition,
use_checkpoint=conf.use_checkpoint,
down=True,
).make_model() if (
conf.resblock_updown
) else Downsample(ch,
conf.conv_resample,
dims=conf.dims,
out_channels=out_ch)))
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
ResBlockConfig(
ch,
time_embed_dim,
conf.dropout,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_condition=conf.use_time_condition,
use_checkpoint=conf.use_checkpoint,
).make_model(),
AttentionBlock(
ch,
use_checkpoint=conf.use_checkpoint,
num_heads=conf.num_heads,
num_head_channels=conf.num_head_channels,
group_norm_limit=conf.group_norm_limit,
use_new_attention_order=conf.use_new_attention_order,
),
ResBlockConfig(
ch,
time_embed_dim,
conf.dropout,
group_norm_limit=conf.group_norm_limit,
dims=conf.dims,
use_condition=conf.use_time_condition,
use_checkpoint=conf.use_checkpoint,
).make_model(),
)
self._feature_size += ch
if conf.pool == "adaptivenonzero":
self.out = nn.Sequential(
normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32),
nn.SiLU(),
nn.AdaptiveAvgPool2d((1, 1)) if conf.dims == 2 else nn.AdaptiveAvgPool3d((1, 1, 1)),
conv_nd(conf.dims, ch, conf.out_channels, 1),
nn.Flatten(),
)
else:
raise NotImplementedError(f"Unexpected {conf.pool} pooling")
def forward(self, x, t=None, return_Nd_feature=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:return: an [N x K] Tensor of outputs.
"""
if self.conf.use_time_condition:
emb = self.time_embed(timestep_embedding(t, self.model_channels))
else:
emb = None
results = []
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb=emb)
if self.conf.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
h = self.middle_block(h, emb=emb)
if self.conf.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4)))
h = th.cat(results, axis=-1)
else:
h = h.type(x.dtype)
h_Nd = h
h = self.out(h)
if return_Nd_feature:
return h, h_Nd
else:
return h
def forward_flatten(self, x):
"""
transform the last Nd feature into a flatten vector
"""
h = self.out(x)
return h
class SuperResModel(BeatGANsUNetModel):
"""
A UNetModel that performs super-resolution.
Expects an extra kwarg `low_res` to condition on a low-resolution image.
"""
def __init__(self, image_size, in_channels, *args, **kwargs):
super().__init__(image_size, in_channels * 2, *args, **kwargs)
def forward(self, x, timesteps, low_res=None, **kwargs):
_, _, new_height, new_width = x.shape
upsampled = F.interpolate(low_res, (new_height, new_width),
mode="bilinear")
x = th.cat([x, upsampled], dim=1)
return super().forward(x, timesteps, **kwargs)
|