--- language: - sw license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: llama-3-8b datasets: mwitiderrick/SwahiliAlpaca pipeline_tag: text-generation --- # Swahili llama 3 8b - **Developed by:** GodsonNtungi - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit An experimental model with poor performing results, but a great start **training run** : 1 epoch \ **time**: 9 hours : 20 mins : 07 seconds\ **training loss**: 0.8683 **PEFT parameters** ```python model = FastLanguageModel.get_peft_model( model, r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 3407, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) ``` **Weakness** \ The model is not properly finetuned to generate end of text token when needed , hence great results start followed by gibberish depending on max token limit set