File size: 44,832 Bytes
f2da02c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
JOSIE(
  (encoder): Encoder(
    (modality_preprocessors): ModuleDict(
      (vision): RGBDTPreprocessor(
        (cls_token): tensor((1, 1, 768), requires_grad=False)
        
        (rgbt_stem): PatchEmbedGeneric(
          (proj): Sequential(
            (0): PadIm2Video()
            (1): Conv3d(3, 768, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
          )
        )
        (pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
          (pos_embed): tensor((1, 7681, 768), requires_grad=False)
          
        )
      )
      (audio): AudioPreprocessor(
        (cls_token): tensor((1, 1, 768), requires_grad=False)
        
        (rgbt_stem): PatchEmbedGeneric(
          (proj): Conv2d(1, 768, kernel_size=(16, 16), stride=(10, 10), bias=False)
          (norm_layer): RMSNorm()
        )
        (pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
          (pos_embed): tensor((1, 229, 768), requires_grad=False)
          
        )
      )
      (depth): RGBDTPreprocessor(
        (cls_token): tensor((1, 1, 384), requires_grad=False)
        
        (depth_stem): PatchEmbedGeneric(
          (proj): Conv2d(1, 384, kernel_size=(16, 16), stride=(16, 16), bias=False)
          (norm_layer): RMSNorm()
        )
        (pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
          (pos_embed): tensor((1, 197, 384), requires_grad=False)
          
        )
      )
      (thermal): ThermalPreprocessor(
        (cls_token): tensor((1, 1, 768), requires_grad=False)
        
        (rgbt_stem): PatchEmbedGeneric(
          (proj): Conv2d(1, 768, kernel_size=(16, 16), stride=(16, 16), bias=False)
          (norm_layer): RMSNorm()
        )
        (pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
          (pos_embed): tensor((1, 197, 768), requires_grad=False)
          
        )
      )
    )
    (modality_transformers): ModuleDict(
      (vision): EncoderTransformer(
        (pre_transformer_layer): Sequential(
          (0): RMSNorm()
          (1): EinOpsRearrange()
        )
        (post_transformer_layer): EinOpsRearrange()
        (blocks): ModuleList(
          (0): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (1): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (2): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (3): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (4): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (5): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (6): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (7): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (8): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (9): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (10): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (11): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
        )
      )
      (audio): EncoderTransformer(
        (pre_transformer_layer): Sequential(
          (0): RMSNorm()
          (1): EinOpsRearrange()
        )
        (post_transformer_layer): EinOpsRearrange()
        (blocks): ModuleList(
          (0): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (1): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.009)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (2): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.018)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (3): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.027)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (4): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.036)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (5): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.045)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (6): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.055)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (7): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.064)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (8): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.073)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (9): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.082)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (10): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.091)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (11): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): DropPath(drop_prob=0.100)
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
        )
      )
      (depth): EncoderTransformer(
        (pre_transformer_layer): Sequential(
          (0): RMSNorm()
          (1): EinOpsRearrange()
        )
        (post_transformer_layer): EinOpsRearrange()
        (blocks): ModuleList(
          (0): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
          (1): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
          (2): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
          (3): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
          (4): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
          (5): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=384, out_features=256, bias=False)
              (w2): Linear(in_features=256, out_features=384, bias=False)
              (w3): Linear(in_features=384, out_features=256, bias=False)
            )
          )
        )
      )
      (thermal): EncoderTransformer(
        (pre_transformer_layer): Sequential(
          (0): RMSNorm()
          (1): EinOpsRearrange()
        )
        (post_transformer_layer): EinOpsRearrange()
        (blocks): ModuleList(
          (0): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (1): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (2): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (3): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (4): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
          (5): EncoderTransformerBlock(
            (attn): MultiheadAttention(
              (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
            )
            (drop_path): Identity()
            (norm1): RMSNorm()
            (norm2): RMSNorm()
            (mlp): MLP(
              (w1): Linear(in_features=768, out_features=512, bias=False)
              (w2): Linear(in_features=512, out_features=768, bias=False)
              (w3): Linear(in_features=768, out_features=512, bias=False)
            )
          )
        )
      )
    )
    (modality_heads): ModuleDict(
      (vision): Sequential(
        (0): RMSNorm()
        (1): SelectElement()
        (2): Linear(in_features=768, out_features=1024, bias=False)
      )
      (audio): Sequential(
        (0): RMSNorm()
        (1): SelectElement()
        (2): Linear(in_features=768, out_features=1024, bias=False)
      )
      (depth): Sequential(
        (0): RMSNorm()
        (1): SelectElement()
        (2): Linear(in_features=384, out_features=1024, bias=False)
      )
      (thermal): Sequential(
        (0): RMSNorm()
        (1): SelectElement()
        (2): Linear(in_features=768, out_features=1024, bias=False)
      )
    )
  )
  (reasoner): Qwen2ForCausalLM(
    (model): Qwen2Model(
      (embed_tokens): Embedding(151936, 896)
      (layers): ModuleList(
        (0): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (1): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (2): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (3): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (4): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (5): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (6): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (7): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (8): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (9): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (10): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (11): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (12): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (13): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (14): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (15): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (16): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (17): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (18): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (19): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (20): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (21): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (22): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
        (23): Qwen2DecoderLayer(
          (self_attn): Qwen2Attention(
            (q_proj): Linear(in_features=896, out_features=896, bias=True)
            (k_proj): Linear(in_features=896, out_features=128, bias=True)
            (v_proj): Linear(in_features=896, out_features=128, bias=True)
            (o_proj): Linear(in_features=896, out_features=896, bias=False)
            (rotary_emb): Qwen2RotaryEmbedding()
          )
          (mlp): Qwen2MLP(
            (gate_proj): Linear(in_features=896, out_features=4864, bias=False)
            (up_proj): Linear(in_features=896, out_features=4864, bias=False)
            (down_proj): Linear(in_features=4864, out_features=896, bias=False)
            (act_fn): SiLU()
          )
          (input_layernorm): Qwen2RMSNorm()
          (post_attention_layernorm): Qwen2RMSNorm()
        )
      )
      (norm): Qwen2RMSNorm()
    )
    (lm_head): Linear(in_features=896, out_features=151936, bias=False)
  )
  (input_projetor): Linear(in_features=1024, out_features=896, bias=True)
)