J.O.S.I.E.v4o / model_architecture.txt
Isaak Carter Augustus
Upload 2 files
cdf0a4a verified
raw
history blame
94 kB
Currently not using the OG trained model for easy and fast loading, ...
Used LLM Qwen2 0.5B
JOSIE(
(imagebind_encoder): ImageBindModel(
(modality_preprocessors): ModuleDict(
(vision): RGBDTPreprocessor(
(cls_token): tensor((1, 1, 1280), requires_grad=False)
(rgbt_stem): PatchEmbedGeneric(
(proj): Sequential(
(0): PadIm2Video()
(1): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
)
)
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
(pos_embed): tensor((1, 257, 1280), requires_grad=False)
)
)
(text): TextPreprocessor(
(pos_embed): tensor((1, 77, 1024), requires_grad=False)
(mask): tensor((77, 77), requires_grad=False)
(token_embedding): Embedding(49408, 1024)
)
(audio): AudioPreprocessor(
(cls_token): tensor((1, 1, 768), requires_grad=False)
(rgbt_stem): PatchEmbedGeneric(
(proj): Conv2d(1, 768, kernel_size=(16, 16), stride=(10, 10), bias=False)
(norm_layer): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
(pos_embed): tensor((1, 229, 768), requires_grad=False)
)
)
(depth): RGBDTPreprocessor(
(cls_token): tensor((1, 1, 384), requires_grad=False)
(depth_stem): PatchEmbedGeneric(
(proj): Conv2d(1, 384, kernel_size=(16, 16), stride=(16, 16), bias=False)
(norm_layer): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
(pos_embed): tensor((1, 197, 384), requires_grad=False)
)
)
(thermal): ThermalPreprocessor(
(cls_token): tensor((1, 1, 768), requires_grad=False)
(rgbt_stem): PatchEmbedGeneric(
(proj): Conv2d(1, 768, kernel_size=(16, 16), stride=(16, 16), bias=False)
(norm_layer): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
(pos_embed): tensor((1, 197, 768), requires_grad=False)
)
)
(imu): IMUPreprocessor(
(pos_embed): tensor((1, 251, 512), requires_grad=False)
(cls_token): tensor((1, 1, 512), requires_grad=False)
(imu_stem): PatchEmbedGeneric(
(proj): Linear(in_features=48, out_features=512, bias=False)
(norm_layer): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
)
)
)
(modality_trunks): ModuleDict(
(vision): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(6): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(7): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(8): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(9): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(10): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(11): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(12): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(13): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(14): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(15): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(16): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(17): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(18): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(19): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(20): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(21): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(22): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(23): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(24): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(25): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(26): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(27): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(28): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(29): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(30): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
(31): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
(text): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): Identity()
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(6): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(7): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(8): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(9): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(10): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(11): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(12): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(13): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(14): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(15): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(16): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(17): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(18): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(19): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(20): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(21): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(22): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
(23): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=1024, out_features=1024, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
(audio): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): Identity()
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.009)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.018)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.027)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.036)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.045)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(6): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.055)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(7): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.064)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(8): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.073)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(9): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.082)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(10): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.091)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(11): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): DropPath(drop_prob=0.100)
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
(depth): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): Identity()
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(6): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(7): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(8): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(9): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(10): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
(11): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
(thermal): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): Identity()
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(6): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(7): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(8): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(9): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(10): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
(11): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
(imu): SimpleTransformer(
(pre_transformer_layer): Sequential(
(0): Identity()
(1): EinOpsRearrange()
)
(blocks): Sequential(
(0): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): Identity()
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
(1): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): DropPath(drop_prob=0.140)
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
(2): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): DropPath(drop_prob=0.280)
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
(3): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): DropPath(drop_prob=0.420)
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
(4): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): DropPath(drop_prob=0.560)
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
(5): BlockWithMasking(
(attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
)
(drop_path): DropPath(drop_prob=0.700)
(norm_1): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=512, out_features=2048, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=2048, out_features=512, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(norm_2): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
)
)
(post_transformer_layer): EinOpsRearrange()
)
)
(modality_heads): ModuleDict(
(vision): Sequential(
(0): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
(1): SelectElement()
(2): Linear(in_features=1280, out_features=1024, bias=False)
)
(text): SelectEOSAndProject(
(proj): Sequential(
(0): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(1): Linear(in_features=1024, out_features=1024, bias=False)
)
)
(audio): Sequential(
(0): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(1): SelectElement()
(2): Linear(in_features=768, out_features=1024, bias=False)
)
(depth): Sequential(
(0): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
(1): SelectElement()
(2): Linear(in_features=384, out_features=1024, bias=False)
)
(thermal): Sequential(
(0): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(1): SelectElement()
(2): Linear(in_features=768, out_features=1024, bias=False)
)
(imu): Sequential(
(0): LayerNorm((512,), eps=1e-06, elementwise_affine=True)
(1): SelectElement()
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=512, out_features=1024, bias=False)
)
)
(modality_postprocessors): ModuleDict(
(vision): Normalize()
(text): Sequential(
(0): Normalize()
(1): LearnableLogitScaling(logit_scale_init=14.285714285714285,learnable=True, max_logit_scale=100)
)
(audio): Sequential(
(0): Normalize()
(1): LearnableLogitScaling(logit_scale_init=20.0,learnable=False, max_logit_scale=100)
)
(depth): Sequential(
(0): Normalize()
(1): LearnableLogitScaling(logit_scale_init=5.0,learnable=False, max_logit_scale=100)
)
(thermal): Sequential(
(0): Normalize()
(1): LearnableLogitScaling(logit_scale_init=10.0,learnable=False, max_logit_scale=100)
)
(imu): Sequential(
(0): Normalize()
(1): LearnableLogitScaling(logit_scale_init=5.0,learnable=False, max_logit_scale=100)
)
)
)
(reasoner): Qwen2ForCausalLM(
(model): Qwen2Model(
(embed_tokens): Embedding(151936, 896)
(layers): ModuleList(
(0): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(1): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(2): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(3): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(4): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(5): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(6): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(7): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(8): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(9): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(10): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(11): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(12): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(13): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(14): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(15): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(16): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(17): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(18): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(19): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(20): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(21): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(22): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
(23): Qwen2DecoderLayer(
(self_attn): Qwen2Attention(
(q_proj): Linear(in_features=896, out_features=896, bias=True)
(k_proj): Linear(in_features=896, out_features=128, bias=True)
(v_proj): Linear(in_features=896, out_features=128, bias=True)
(o_proj): Linear(in_features=896, out_features=896, bias=False)
(rotary_emb): Qwen2RotaryEmbedding()
)
(mlp): Qwen2MLP(
(gate_proj): Linear(in_features=896, out_features=4864, bias=False)
(up_proj): Linear(in_features=896, out_features=4864, bias=False)
(down_proj): Linear(in_features=4864, out_features=896, bias=False)
(act_fn): SiLU()
)
(input_layernorm): Qwen2RMSNorm()
(post_attention_layernorm): Qwen2RMSNorm()
)
)
(norm): Qwen2RMSNorm()
)
(lm_head): Linear(in_features=896, out_features=151936, bias=False)
)
(input_projetor): Linear(in_features=1024, out_features=896, bias=True)
)