Isaak Carter Augustus
commited on
Commit
•
adb2018
1
Parent(s):
bf0fed4
Update README.md
Browse files
README.md
CHANGED
@@ -105,4 +105,708 @@ I welcome contributions from the you! To contribute to J.O.S.I.E., please fork t
|
|
105 |
|
106 |
## License
|
107 |
|
108 |
-
J.O.S.I.E. is licensed under the Apache2 License. See the [LICENSE](LICENSE) file for more details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
## License
|
107 |
|
108 |
+
J.O.S.I.E. is licensed under the Apache2 License. See the [LICENSE](LICENSE) file for more details.
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
# Big Updates!
|
115 |
+
|
116 |
+
I have finaly trained the Vision and Audio encoder part, big thangs to FaceBook Research for the ImageBind model, wich is what I have build it on top of.
|
117 |
+
|
118 |
+
What I did was, I copied the weights from the original ImageBind model into a second 'downcycled' ImageBindVisionAudioHuge model.
|
119 |
+
After that I have continued to trained the model on a custom Vision and Audio dataset using the contrastive learning Algorythm introduced by Google with Pali Gemma with the text embeddings from the origional ImageBind model.
|
120 |
+
|
121 |
+
After mergind the encoder with the test reasoner (Qwen2-0.5B-Instruct), I got succesfull inference on both video, image and audio.
|
122 |
+
I will slowly start writing the training scrypt, creating the new dataset, and optimizing the model and inference code a litle bit more, and lastly train the model.
|
123 |
+
|
124 |
+
Here are the actual model layers:
|
125 |
+
|
126 |
+
```txt
|
127 |
+
ImageBindModelAudioVision(
|
128 |
+
(modality_preprocessors): ModuleDict(
|
129 |
+
(vision): RGBDTPreprocessor(
|
130 |
+
(cls_token): tensor((1, 1, 1280), requires_grad=True)
|
131 |
+
|
132 |
+
(rgbt_stem): PatchEmbedGeneric(
|
133 |
+
(proj): Sequential(
|
134 |
+
(0): PadIm2Video()
|
135 |
+
(1): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
|
139 |
+
(pos_embed): tensor((1, 257, 1280), requires_grad=True)
|
140 |
+
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(audio): AudioPreprocessor(
|
144 |
+
(cls_token): tensor((1, 1, 768), requires_grad=True)
|
145 |
+
|
146 |
+
(rgbt_stem): PatchEmbedGeneric(
|
147 |
+
(proj): Conv2d(1, 768, kernel_size=(16, 16), stride=(10, 10), bias=False)
|
148 |
+
(norm_layer): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
149 |
+
)
|
150 |
+
(pos_embedding_helper): SpatioTemporalPosEmbeddingHelper(
|
151 |
+
(pos_embed): tensor((1, 229, 768), requires_grad=True)
|
152 |
+
|
153 |
+
)
|
154 |
+
)
|
155 |
+
)
|
156 |
+
(modality_trunks): ModuleDict(
|
157 |
+
(vision): SimpleTransformer(
|
158 |
+
(pre_transformer_layer): Sequential(
|
159 |
+
(0): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
160 |
+
(1): EinOpsRearrange()
|
161 |
+
)
|
162 |
+
(blocks): Sequential(
|
163 |
+
(0): BlockWithMasking(
|
164 |
+
(attn): MultiheadAttention(
|
165 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
166 |
+
)
|
167 |
+
(drop_path): Identity()
|
168 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
169 |
+
(mlp): Mlp(
|
170 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
171 |
+
(act): GELU(approximate='none')
|
172 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
173 |
+
(drop): Dropout(p=0.0, inplace=False)
|
174 |
+
)
|
175 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
176 |
+
)
|
177 |
+
(1): BlockWithMasking(
|
178 |
+
(attn): MultiheadAttention(
|
179 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
180 |
+
)
|
181 |
+
(drop_path): Identity()
|
182 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
183 |
+
(mlp): Mlp(
|
184 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
185 |
+
(act): GELU(approximate='none')
|
186 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
187 |
+
(drop): Dropout(p=0.0, inplace=False)
|
188 |
+
)
|
189 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
190 |
+
)
|
191 |
+
(2): BlockWithMasking(
|
192 |
+
(attn): MultiheadAttention(
|
193 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
194 |
+
)
|
195 |
+
(drop_path): Identity()
|
196 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
197 |
+
(mlp): Mlp(
|
198 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
199 |
+
(act): GELU(approximate='none')
|
200 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
201 |
+
(drop): Dropout(p=0.0, inplace=False)
|
202 |
+
)
|
203 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
204 |
+
)
|
205 |
+
(3): BlockWithMasking(
|
206 |
+
(attn): MultiheadAttention(
|
207 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
208 |
+
)
|
209 |
+
(drop_path): Identity()
|
210 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
211 |
+
(mlp): Mlp(
|
212 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
213 |
+
(act): GELU(approximate='none')
|
214 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
215 |
+
(drop): Dropout(p=0.0, inplace=False)
|
216 |
+
)
|
217 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
218 |
+
)
|
219 |
+
(4): BlockWithMasking(
|
220 |
+
(attn): MultiheadAttention(
|
221 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
222 |
+
)
|
223 |
+
(drop_path): Identity()
|
224 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
225 |
+
(mlp): Mlp(
|
226 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
227 |
+
(act): GELU(approximate='none')
|
228 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
229 |
+
(drop): Dropout(p=0.0, inplace=False)
|
230 |
+
)
|
231 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
232 |
+
)
|
233 |
+
(5): BlockWithMasking(
|
234 |
+
(attn): MultiheadAttention(
|
235 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
236 |
+
)
|
237 |
+
(drop_path): Identity()
|
238 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
239 |
+
(mlp): Mlp(
|
240 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
241 |
+
(act): GELU(approximate='none')
|
242 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
243 |
+
(drop): Dropout(p=0.0, inplace=False)
|
244 |
+
)
|
245 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
246 |
+
)
|
247 |
+
(6): BlockWithMasking(
|
248 |
+
(attn): MultiheadAttention(
|
249 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
250 |
+
)
|
251 |
+
(drop_path): Identity()
|
252 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
253 |
+
(mlp): Mlp(
|
254 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
255 |
+
(act): GELU(approximate='none')
|
256 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
257 |
+
(drop): Dropout(p=0.0, inplace=False)
|
258 |
+
)
|
259 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
260 |
+
)
|
261 |
+
(7): BlockWithMasking(
|
262 |
+
(attn): MultiheadAttention(
|
263 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
264 |
+
)
|
265 |
+
(drop_path): Identity()
|
266 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
267 |
+
(mlp): Mlp(
|
268 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
269 |
+
(act): GELU(approximate='none')
|
270 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
271 |
+
(drop): Dropout(p=0.0, inplace=False)
|
272 |
+
)
|
273 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
274 |
+
)
|
275 |
+
(8): BlockWithMasking(
|
276 |
+
(attn): MultiheadAttention(
|
277 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
278 |
+
)
|
279 |
+
(drop_path): Identity()
|
280 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
281 |
+
(mlp): Mlp(
|
282 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
283 |
+
(act): GELU(approximate='none')
|
284 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
285 |
+
(drop): Dropout(p=0.0, inplace=False)
|
286 |
+
)
|
287 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
288 |
+
)
|
289 |
+
(9): BlockWithMasking(
|
290 |
+
(attn): MultiheadAttention(
|
291 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
292 |
+
)
|
293 |
+
(drop_path): Identity()
|
294 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
295 |
+
(mlp): Mlp(
|
296 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
297 |
+
(act): GELU(approximate='none')
|
298 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
299 |
+
(drop): Dropout(p=0.0, inplace=False)
|
300 |
+
)
|
301 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
302 |
+
)
|
303 |
+
(10): BlockWithMasking(
|
304 |
+
(attn): MultiheadAttention(
|
305 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
306 |
+
)
|
307 |
+
(drop_path): Identity()
|
308 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
309 |
+
(mlp): Mlp(
|
310 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
311 |
+
(act): GELU(approximate='none')
|
312 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
313 |
+
(drop): Dropout(p=0.0, inplace=False)
|
314 |
+
)
|
315 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
316 |
+
)
|
317 |
+
(11): BlockWithMasking(
|
318 |
+
(attn): MultiheadAttention(
|
319 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
320 |
+
)
|
321 |
+
(drop_path): Identity()
|
322 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
323 |
+
(mlp): Mlp(
|
324 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
325 |
+
(act): GELU(approximate='none')
|
326 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
327 |
+
(drop): Dropout(p=0.0, inplace=False)
|
328 |
+
)
|
329 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
330 |
+
)
|
331 |
+
(12): BlockWithMasking(
|
332 |
+
(attn): MultiheadAttention(
|
333 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
334 |
+
)
|
335 |
+
(drop_path): Identity()
|
336 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
337 |
+
(mlp): Mlp(
|
338 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
339 |
+
(act): GELU(approximate='none')
|
340 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
341 |
+
(drop): Dropout(p=0.0, inplace=False)
|
342 |
+
)
|
343 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
344 |
+
)
|
345 |
+
(13): BlockWithMasking(
|
346 |
+
(attn): MultiheadAttention(
|
347 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
348 |
+
)
|
349 |
+
(drop_path): Identity()
|
350 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
351 |
+
(mlp): Mlp(
|
352 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
353 |
+
(act): GELU(approximate='none')
|
354 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
355 |
+
(drop): Dropout(p=0.0, inplace=False)
|
356 |
+
)
|
357 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
358 |
+
)
|
359 |
+
(14): BlockWithMasking(
|
360 |
+
(attn): MultiheadAttention(
|
361 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
362 |
+
)
|
363 |
+
(drop_path): Identity()
|
364 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
365 |
+
(mlp): Mlp(
|
366 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
367 |
+
(act): GELU(approximate='none')
|
368 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
369 |
+
(drop): Dropout(p=0.0, inplace=False)
|
370 |
+
)
|
371 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
372 |
+
)
|
373 |
+
(15): BlockWithMasking(
|
374 |
+
(attn): MultiheadAttention(
|
375 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
376 |
+
)
|
377 |
+
(drop_path): Identity()
|
378 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
379 |
+
(mlp): Mlp(
|
380 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
381 |
+
(act): GELU(approximate='none')
|
382 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
383 |
+
(drop): Dropout(p=0.0, inplace=False)
|
384 |
+
)
|
385 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
386 |
+
)
|
387 |
+
(16): BlockWithMasking(
|
388 |
+
(attn): MultiheadAttention(
|
389 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
390 |
+
)
|
391 |
+
(drop_path): Identity()
|
392 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
393 |
+
(mlp): Mlp(
|
394 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
395 |
+
(act): GELU(approximate='none')
|
396 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
397 |
+
(drop): Dropout(p=0.0, inplace=False)
|
398 |
+
)
|
399 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
400 |
+
)
|
401 |
+
(17): BlockWithMasking(
|
402 |
+
(attn): MultiheadAttention(
|
403 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
404 |
+
)
|
405 |
+
(drop_path): Identity()
|
406 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
407 |
+
(mlp): Mlp(
|
408 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
409 |
+
(act): GELU(approximate='none')
|
410 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
411 |
+
(drop): Dropout(p=0.0, inplace=False)
|
412 |
+
)
|
413 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
414 |
+
)
|
415 |
+
(18): BlockWithMasking(
|
416 |
+
(attn): MultiheadAttention(
|
417 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
418 |
+
)
|
419 |
+
(drop_path): Identity()
|
420 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
421 |
+
(mlp): Mlp(
|
422 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
423 |
+
(act): GELU(approximate='none')
|
424 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
425 |
+
(drop): Dropout(p=0.0, inplace=False)
|
426 |
+
)
|
427 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
428 |
+
)
|
429 |
+
(19): BlockWithMasking(
|
430 |
+
(attn): MultiheadAttention(
|
431 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
432 |
+
)
|
433 |
+
(drop_path): Identity()
|
434 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
435 |
+
(mlp): Mlp(
|
436 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
437 |
+
(act): GELU(approximate='none')
|
438 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
439 |
+
(drop): Dropout(p=0.0, inplace=False)
|
440 |
+
)
|
441 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
442 |
+
)
|
443 |
+
(20): BlockWithMasking(
|
444 |
+
(attn): MultiheadAttention(
|
445 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
446 |
+
)
|
447 |
+
(drop_path): Identity()
|
448 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
449 |
+
(mlp): Mlp(
|
450 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
451 |
+
(act): GELU(approximate='none')
|
452 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
453 |
+
(drop): Dropout(p=0.0, inplace=False)
|
454 |
+
)
|
455 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
456 |
+
)
|
457 |
+
(21): BlockWithMasking(
|
458 |
+
(attn): MultiheadAttention(
|
459 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
460 |
+
)
|
461 |
+
(drop_path): Identity()
|
462 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
463 |
+
(mlp): Mlp(
|
464 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
465 |
+
(act): GELU(approximate='none')
|
466 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
467 |
+
(drop): Dropout(p=0.0, inplace=False)
|
468 |
+
)
|
469 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
470 |
+
)
|
471 |
+
(22): BlockWithMasking(
|
472 |
+
(attn): MultiheadAttention(
|
473 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
474 |
+
)
|
475 |
+
(drop_path): Identity()
|
476 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
477 |
+
(mlp): Mlp(
|
478 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
479 |
+
(act): GELU(approximate='none')
|
480 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
481 |
+
(drop): Dropout(p=0.0, inplace=False)
|
482 |
+
)
|
483 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
484 |
+
)
|
485 |
+
(23): BlockWithMasking(
|
486 |
+
(attn): MultiheadAttention(
|
487 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
488 |
+
)
|
489 |
+
(drop_path): Identity()
|
490 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
491 |
+
(mlp): Mlp(
|
492 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
493 |
+
(act): GELU(approximate='none')
|
494 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
495 |
+
(drop): Dropout(p=0.0, inplace=False)
|
496 |
+
)
|
497 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
498 |
+
)
|
499 |
+
(24): BlockWithMasking(
|
500 |
+
(attn): MultiheadAttention(
|
501 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
502 |
+
)
|
503 |
+
(drop_path): Identity()
|
504 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
505 |
+
(mlp): Mlp(
|
506 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
507 |
+
(act): GELU(approximate='none')
|
508 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
509 |
+
(drop): Dropout(p=0.0, inplace=False)
|
510 |
+
)
|
511 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
512 |
+
)
|
513 |
+
(25): BlockWithMasking(
|
514 |
+
(attn): MultiheadAttention(
|
515 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
516 |
+
)
|
517 |
+
(drop_path): Identity()
|
518 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
519 |
+
(mlp): Mlp(
|
520 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
521 |
+
(act): GELU(approximate='none')
|
522 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
523 |
+
(drop): Dropout(p=0.0, inplace=False)
|
524 |
+
)
|
525 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
526 |
+
)
|
527 |
+
(26): BlockWithMasking(
|
528 |
+
(attn): MultiheadAttention(
|
529 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
530 |
+
)
|
531 |
+
(drop_path): Identity()
|
532 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
533 |
+
(mlp): Mlp(
|
534 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
535 |
+
(act): GELU(approximate='none')
|
536 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
537 |
+
(drop): Dropout(p=0.0, inplace=False)
|
538 |
+
)
|
539 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
540 |
+
)
|
541 |
+
(27): BlockWithMasking(
|
542 |
+
(attn): MultiheadAttention(
|
543 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
544 |
+
)
|
545 |
+
(drop_path): Identity()
|
546 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
547 |
+
(mlp): Mlp(
|
548 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
549 |
+
(act): GELU(approximate='none')
|
550 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
551 |
+
(drop): Dropout(p=0.0, inplace=False)
|
552 |
+
)
|
553 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
554 |
+
)
|
555 |
+
(28): BlockWithMasking(
|
556 |
+
(attn): MultiheadAttention(
|
557 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
558 |
+
)
|
559 |
+
(drop_path): Identity()
|
560 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
561 |
+
(mlp): Mlp(
|
562 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
563 |
+
(act): GELU(approximate='none')
|
564 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
565 |
+
(drop): Dropout(p=0.0, inplace=False)
|
566 |
+
)
|
567 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
568 |
+
)
|
569 |
+
(29): BlockWithMasking(
|
570 |
+
(attn): MultiheadAttention(
|
571 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
572 |
+
)
|
573 |
+
(drop_path): Identity()
|
574 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
575 |
+
(mlp): Mlp(
|
576 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
577 |
+
(act): GELU(approximate='none')
|
578 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
579 |
+
(drop): Dropout(p=0.0, inplace=False)
|
580 |
+
)
|
581 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
582 |
+
)
|
583 |
+
(30): BlockWithMasking(
|
584 |
+
(attn): MultiheadAttention(
|
585 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
586 |
+
)
|
587 |
+
(drop_path): Identity()
|
588 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
589 |
+
(mlp): Mlp(
|
590 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
591 |
+
(act): GELU(approximate='none')
|
592 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
593 |
+
(drop): Dropout(p=0.0, inplace=False)
|
594 |
+
)
|
595 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
596 |
+
)
|
597 |
+
(31): BlockWithMasking(
|
598 |
+
(attn): MultiheadAttention(
|
599 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=1280, out_features=1280, bias=True)
|
600 |
+
)
|
601 |
+
(drop_path): Identity()
|
602 |
+
(norm_1): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
603 |
+
(mlp): Mlp(
|
604 |
+
(fc1): Linear(in_features=1280, out_features=5120, bias=True)
|
605 |
+
(act): GELU(approximate='none')
|
606 |
+
(fc2): Linear(in_features=5120, out_features=1280, bias=True)
|
607 |
+
(drop): Dropout(p=0.0, inplace=False)
|
608 |
+
)
|
609 |
+
(norm_2): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
610 |
+
)
|
611 |
+
)
|
612 |
+
(post_transformer_layer): EinOpsRearrange()
|
613 |
+
)
|
614 |
+
(audio): SimpleTransformer(
|
615 |
+
(pre_transformer_layer): Sequential(
|
616 |
+
(0): Identity()
|
617 |
+
(1): EinOpsRearrange()
|
618 |
+
)
|
619 |
+
(blocks): Sequential(
|
620 |
+
(0): BlockWithMasking(
|
621 |
+
(attn): MultiheadAttention(
|
622 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
623 |
+
)
|
624 |
+
(drop_path): Identity()
|
625 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
626 |
+
(mlp): Mlp(
|
627 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
628 |
+
(act): GELU(approximate='none')
|
629 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
630 |
+
(drop): Dropout(p=0.0, inplace=False)
|
631 |
+
)
|
632 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
633 |
+
)
|
634 |
+
(1): BlockWithMasking(
|
635 |
+
(attn): MultiheadAttention(
|
636 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
637 |
+
)
|
638 |
+
(drop_path): DropPath(drop_prob=0.009)
|
639 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
640 |
+
(mlp): Mlp(
|
641 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
642 |
+
(act): GELU(approximate='none')
|
643 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
644 |
+
(drop): Dropout(p=0.0, inplace=False)
|
645 |
+
)
|
646 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
647 |
+
)
|
648 |
+
(2): BlockWithMasking(
|
649 |
+
(attn): MultiheadAttention(
|
650 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
651 |
+
)
|
652 |
+
(drop_path): DropPath(drop_prob=0.018)
|
653 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
654 |
+
(mlp): Mlp(
|
655 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
656 |
+
(act): GELU(approximate='none')
|
657 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
658 |
+
(drop): Dropout(p=0.0, inplace=False)
|
659 |
+
)
|
660 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
661 |
+
)
|
662 |
+
(3): BlockWithMasking(
|
663 |
+
(attn): MultiheadAttention(
|
664 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
665 |
+
)
|
666 |
+
(drop_path): DropPath(drop_prob=0.027)
|
667 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
668 |
+
(mlp): Mlp(
|
669 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
670 |
+
(act): GELU(approximate='none')
|
671 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
672 |
+
(drop): Dropout(p=0.0, inplace=False)
|
673 |
+
)
|
674 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
675 |
+
)
|
676 |
+
(4): BlockWithMasking(
|
677 |
+
(attn): MultiheadAttention(
|
678 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
679 |
+
)
|
680 |
+
(drop_path): DropPath(drop_prob=0.036)
|
681 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
682 |
+
(mlp): Mlp(
|
683 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
684 |
+
(act): GELU(approximate='none')
|
685 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
686 |
+
(drop): Dropout(p=0.0, inplace=False)
|
687 |
+
)
|
688 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
689 |
+
)
|
690 |
+
(5): BlockWithMasking(
|
691 |
+
(attn): MultiheadAttention(
|
692 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
693 |
+
)
|
694 |
+
(drop_path): DropPath(drop_prob=0.045)
|
695 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
696 |
+
(mlp): Mlp(
|
697 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
698 |
+
(act): GELU(approximate='none')
|
699 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
700 |
+
(drop): Dropout(p=0.0, inplace=False)
|
701 |
+
)
|
702 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
703 |
+
)
|
704 |
+
(6): BlockWithMasking(
|
705 |
+
(attn): MultiheadAttention(
|
706 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
707 |
+
)
|
708 |
+
(drop_path): DropPath(drop_prob=0.055)
|
709 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
710 |
+
(mlp): Mlp(
|
711 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
712 |
+
(act): GELU(approximate='none')
|
713 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
714 |
+
(drop): Dropout(p=0.0, inplace=False)
|
715 |
+
)
|
716 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
717 |
+
)
|
718 |
+
(7): BlockWithMasking(
|
719 |
+
(attn): MultiheadAttention(
|
720 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
721 |
+
)
|
722 |
+
(drop_path): DropPath(drop_prob=0.064)
|
723 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
724 |
+
(mlp): Mlp(
|
725 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
726 |
+
(act): GELU(approximate='none')
|
727 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
728 |
+
(drop): Dropout(p=0.0, inplace=False)
|
729 |
+
)
|
730 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
731 |
+
)
|
732 |
+
(8): BlockWithMasking(
|
733 |
+
(attn): MultiheadAttention(
|
734 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
735 |
+
)
|
736 |
+
(drop_path): DropPath(drop_prob=0.073)
|
737 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
738 |
+
(mlp): Mlp(
|
739 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
740 |
+
(act): GELU(approximate='none')
|
741 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
742 |
+
(drop): Dropout(p=0.0, inplace=False)
|
743 |
+
)
|
744 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
745 |
+
)
|
746 |
+
(9): BlockWithMasking(
|
747 |
+
(attn): MultiheadAttention(
|
748 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
749 |
+
)
|
750 |
+
(drop_path): DropPath(drop_prob=0.082)
|
751 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
752 |
+
(mlp): Mlp(
|
753 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
754 |
+
(act): GELU(approximate='none')
|
755 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
756 |
+
(drop): Dropout(p=0.0, inplace=False)
|
757 |
+
)
|
758 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
759 |
+
)
|
760 |
+
(10): BlockWithMasking(
|
761 |
+
(attn): MultiheadAttention(
|
762 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
763 |
+
)
|
764 |
+
(drop_path): DropPath(drop_prob=0.091)
|
765 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
766 |
+
(mlp): Mlp(
|
767 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
768 |
+
(act): GELU(approximate='none')
|
769 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
770 |
+
(drop): Dropout(p=0.0, inplace=False)
|
771 |
+
)
|
772 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
773 |
+
)
|
774 |
+
(11): BlockWithMasking(
|
775 |
+
(attn): MultiheadAttention(
|
776 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
777 |
+
)
|
778 |
+
(drop_path): DropPath(drop_prob=0.100)
|
779 |
+
(norm_1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
780 |
+
(mlp): Mlp(
|
781 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
782 |
+
(act): GELU(approximate='none')
|
783 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
784 |
+
(drop): Dropout(p=0.0, inplace=False)
|
785 |
+
)
|
786 |
+
(norm_2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
787 |
+
)
|
788 |
+
)
|
789 |
+
(post_transformer_layer): EinOpsRearrange()
|
790 |
+
)
|
791 |
+
)
|
792 |
+
(modality_heads): ModuleDict(
|
793 |
+
(vision): Sequential(
|
794 |
+
(0): LayerNorm((1280,), eps=1e-06, elementwise_affine=True)
|
795 |
+
(1): SelectElement()
|
796 |
+
(2): Linear(in_features=1280, out_features=1024, bias=False)
|
797 |
+
)
|
798 |
+
(audio): Sequential(
|
799 |
+
(0): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
800 |
+
(1): SelectElement()
|
801 |
+
(2): Linear(in_features=768, out_features=1024, bias=False)
|
802 |
+
)
|
803 |
+
)
|
804 |
+
(modality_postprocessors): ModuleDict(
|
805 |
+
(vision): Normalize()
|
806 |
+
(audio): Sequential(
|
807 |
+
(0): Normalize()
|
808 |
+
(1): LearnableLogitScaling(logit_scale_init=20.0,learnable=False, max_logit_scale=100)
|
809 |
+
)
|
810 |
+
)
|
811 |
+
)
|
812 |
+
```
|