File size: 10,038 Bytes
1790e97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import torch
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "CFUI"))
import CFUI.model_management
import CFUI.sample
import CFUI.sampler_helpers
MAX_RESOLUTION=8192
def prepare_mask(mask, shape):
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
mask = mask.expand((-1,shape[1],-1,-1))
if mask.shape[0] < shape[0]:
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
return mask
class NoisyLatentImage:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"source":(["CPU", "GPU"], ),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "create_noisy_latents"
CATEGORY = "latent/noise"
def create_noisy_latents(self, source, seed, width, height, batch_size):
torch.manual_seed(seed)
if source == "CPU":
device = "cpu"
else:
device = CFUI.model_management.get_torch_device()
noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu()
return ({"samples":noise}, )
class DuplicateBatchIndex:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"latents":("LATENT",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "duplicate_index"
CATEGORY = "latent"
def duplicate_index(self, latents, batch_index, batch_size):
s = latents.copy()
batch_index = min(s["samples"].shape[0] - 1, batch_index)
target = s["samples"][batch_index:batch_index + 1].clone()
target = target.repeat((batch_size,1,1,1))
s["samples"] = target
return (s,)
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475
def slerp(val, low, high):
dims = low.shape
#flatten to batches
low = low.reshape(dims[0], -1)
high = high.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
# in case we divide by zero
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
class LatentSlerp:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latents1":("LATENT",),
"factor": ("FLOAT", {"default": .5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional" :{
"latents2":("LATENT",),
"mask": ("MASK", ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "slerp_latents"
CATEGORY = "latent"
def slerp_latents(self, latents1, factor, latents2=None, mask=None):
s = latents1.copy()
if latents2 is None:
return (s,)
if latents1["samples"].shape != latents2["samples"].shape:
print("warning, shapes in LatentSlerp not the same, ignoring")
return (s,)
slerped = slerp(factor, latents1["samples"].clone(), latents2["samples"].clone())
if mask is not None:
mask = prepare_mask(mask, slerped.shape)
slerped = mask * slerped + (1-mask) * latents1["samples"]
s["samples"] = slerped
return (s,)
class GetSigma:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ),
"scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ),
"steps": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 1, "max": 10000}),
}}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "calc_sigma"
CATEGORY = "latent/noise"
def calc_sigma(self, model, sampler_name, scheduler, steps, start_at_step, end_at_step):
device = CFUI.model_management.get_torch_device()
end_at_step = min(steps, end_at_step)
start_at_step = min(start_at_step, end_at_step)
CFUI.model_management.load_model_gpu(model)
sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
sigmas = sampler.sigmas
sigma = sigmas[start_at_step] - sigmas[end_at_step]
sigma /= model.model.latent_format.scale_factor
return (sigma.cpu().numpy(),)
class InjectNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"latents":("LATENT",),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}),
},
"optional":{
"noise": ("LATENT",),
"mask": ("MASK", ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "inject_noise"
CATEGORY = "latent/noise"
def inject_noise(self, latents, strength, noise=None, mask=None):
s = latents.copy()
if noise is None:
return (s,)
if latents["samples"].shape != noise["samples"].shape:
print("warning, shapes in InjectNoise not the same, ignoring")
return (s,)
noised = s["samples"].clone() + noise["samples"].clone() * strength
if mask is not None:
mask = prepare_mask(mask, noised.shape)
noised = mask * noised + (1-mask) * latents["samples"]
s["samples"] = noised
return (s,)
class Unsampler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"end_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
"sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ),
"scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ),
"normalize": (["disable", "enable"], ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "unsampler"
CATEGORY = "sampling"
def unsampler(self, model, cfg, sampler_name, steps, end_at_step, scheduler, normalize, positive, negative, latent_image):
normalize = normalize == "enable"
device = CFUI.model_management.get_torch_device()
latent = latent_image
latent_image = latent["samples"]
end_at_step = min(end_at_step, steps-1)
end_at_step = steps - end_at_step
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
noise_mask = None
if "noise_mask" in latent:
noise_mask = CFUI.sampler_helpers.prepare_mask(latent["noise_mask"], noise.shape, device)
noise = noise.to(device)
latent_image = latent_image.to(device)
conds0 = \
{"positive": CFUI.sampler_helpers.convert_cond(positive),
"negative": CFUI.sampler_helpers.convert_cond(negative)}
conds = {}
for k in conds0:
conds[k] = list(map(lambda a: a.copy(), conds0[k]))
models, inference_memory = CFUI.sampler_helpers.get_additional_models(conds, model.model_dtype())
CFUI.model_management.load_models_gpu([model] + models, model.memory_required(noise.shape) + inference_memory)
sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
sigmas = sampler.sigmas.flip(0) + 0.0001
pbar = CFUI.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, force_full_denoise=False, denoise_mask=noise_mask, sigmas=sigmas, start_step=0, last_step=end_at_step, callback=callback)
if normalize:
#technically doesn't normalize because unsampling is not guaranteed to end at a std given by the schedule
samples -= samples.mean()
samples /= samples.std()
samples = samples.cpu()
CFUI.sampler_helpers.cleanup_additional_models(models)
out = latent.copy()
out["samples"] = samples
return (out, )
NODE_CLASS_MAPPINGS = {
"BNK_NoisyLatentImage": NoisyLatentImage,
#"BNK_DuplicateBatchIndex": DuplicateBatchIndex,
"BNK_SlerpLatent": LatentSlerp,
"BNK_GetSigma": GetSigma,
"BNK_InjectNoise": InjectNoise,
"BNK_Unsampler": Unsampler,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BNK_NoisyLatentImage": "Noisy Latent Image",
#"BNK_DuplicateBatchIndex": "Duplicate Batch Index",
"BNK_SlerpLatent": "Slerp Latents",
"BNK_GetSigma": "Get Sigma",
"BNK_InjectNoise": "Inject Noise",
"BNK_Unsampler": "Unsampler",
} |