import torch import os import sys sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "CFUI")) import CFUI.model_management import CFUI.sample import CFUI.sampler_helpers MAX_RESOLUTION=8192 def prepare_mask(mask, shape): mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") mask = mask.expand((-1,shape[1],-1,-1)) if mask.shape[0] < shape[0]: mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] return mask class NoisyLatentImage: @classmethod def INPUT_TYPES(s): return {"required": { "source":(["CPU", "GPU"], ), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "create_noisy_latents" CATEGORY = "latent/noise" def create_noisy_latents(self, source, seed, width, height, batch_size): torch.manual_seed(seed) if source == "CPU": device = "cpu" else: device = CFUI.model_management.get_torch_device() noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu() return ({"samples":noise}, ) class DuplicateBatchIndex: @classmethod def INPUT_TYPES(s): return {"required": { "latents":("LATENT",), "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 64}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "duplicate_index" CATEGORY = "latent" def duplicate_index(self, latents, batch_index, batch_size): s = latents.copy() batch_index = min(s["samples"].shape[0] - 1, batch_index) target = s["samples"][batch_index:batch_index + 1].clone() target = target.repeat((batch_size,1,1,1)) s["samples"] = target return (s,) # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475 def slerp(val, low, high): dims = low.shape #flatten to batches low = low.reshape(dims[0], -1) high = high.reshape(dims[0], -1) low_norm = low/torch.norm(low, dim=1, keepdim=True) high_norm = high/torch.norm(high, dim=1, keepdim=True) # in case we divide by zero low_norm[low_norm != low_norm] = 0.0 high_norm[high_norm != high_norm] = 0.0 omega = torch.acos((low_norm*high_norm).sum(1)) so = torch.sin(omega) res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high return res.reshape(dims) class LatentSlerp: @classmethod def INPUT_TYPES(s): return { "required": { "latents1":("LATENT",), "factor": ("FLOAT", {"default": .5, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional" :{ "latents2":("LATENT",), "mask": ("MASK", ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "slerp_latents" CATEGORY = "latent" def slerp_latents(self, latents1, factor, latents2=None, mask=None): s = latents1.copy() if latents2 is None: return (s,) if latents1["samples"].shape != latents2["samples"].shape: print("warning, shapes in LatentSlerp not the same, ignoring") return (s,) slerped = slerp(factor, latents1["samples"].clone(), latents2["samples"].clone()) if mask is not None: mask = prepare_mask(mask, slerped.shape) slerped = mask * slerped + (1-mask) * latents1["samples"] s["samples"] = slerped return (s,) class GetSigma: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ), "scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ), "steps": ("INT", {"default": 10000, "min": 0, "max": 10000}), "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "end_at_step": ("INT", {"default": 10000, "min": 1, "max": 10000}), }} RETURN_TYPES = ("FLOAT",) FUNCTION = "calc_sigma" CATEGORY = "latent/noise" def calc_sigma(self, model, sampler_name, scheduler, steps, start_at_step, end_at_step): device = CFUI.model_management.get_torch_device() end_at_step = min(steps, end_at_step) start_at_step = min(start_at_step, end_at_step) CFUI.model_management.load_model_gpu(model) sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) sigmas = sampler.sigmas sigma = sigmas[start_at_step] - sigmas[end_at_step] sigma /= model.model.latent_format.scale_factor return (sigma.cpu().numpy(),) class InjectNoise: @classmethod def INPUT_TYPES(s): return {"required": { "latents":("LATENT",), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}), }, "optional":{ "noise": ("LATENT",), "mask": ("MASK", ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "inject_noise" CATEGORY = "latent/noise" def inject_noise(self, latents, strength, noise=None, mask=None): s = latents.copy() if noise is None: return (s,) if latents["samples"].shape != noise["samples"].shape: print("warning, shapes in InjectNoise not the same, ignoring") return (s,) noised = s["samples"].clone() + noise["samples"].clone() * strength if mask is not None: mask = prepare_mask(mask, noised.shape) noised = mask * noised + (1-mask) * latents["samples"] s["samples"] = noised return (s,) class Unsampler: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "end_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), "sampler_name": (CFUI.samplers.KSampler.SAMPLERS, ), "scheduler": (CFUI.samplers.KSampler.SCHEDULERS, ), "normalize": (["disable", "enable"], ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "unsampler" CATEGORY = "sampling" def unsampler(self, model, cfg, sampler_name, steps, end_at_step, scheduler, normalize, positive, negative, latent_image): normalize = normalize == "enable" device = CFUI.model_management.get_torch_device() latent = latent_image latent_image = latent["samples"] end_at_step = min(end_at_step, steps-1) end_at_step = steps - end_at_step noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") noise_mask = None if "noise_mask" in latent: noise_mask = CFUI.sampler_helpers.prepare_mask(latent["noise_mask"], noise.shape, device) noise = noise.to(device) latent_image = latent_image.to(device) conds0 = \ {"positive": CFUI.sampler_helpers.convert_cond(positive), "negative": CFUI.sampler_helpers.convert_cond(negative)} conds = {} for k in conds0: conds[k] = list(map(lambda a: a.copy(), conds0[k])) models, inference_memory = CFUI.sampler_helpers.get_additional_models(conds, model.model_dtype()) CFUI.model_management.load_models_gpu([model] + models, model.memory_required(noise.shape) + inference_memory) sampler = CFUI.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) sigmas = sampler.sigmas.flip(0) + 0.0001 pbar = CFUI.utils.ProgressBar(steps) def callback(step, x0, x, total_steps): pbar.update_absolute(step + 1, total_steps) samples = sampler.sample(noise, positive, negative, cfg=cfg, latent_image=latent_image, force_full_denoise=False, denoise_mask=noise_mask, sigmas=sigmas, start_step=0, last_step=end_at_step, callback=callback) if normalize: #technically doesn't normalize because unsampling is not guaranteed to end at a std given by the schedule samples -= samples.mean() samples /= samples.std() samples = samples.cpu() CFUI.sampler_helpers.cleanup_additional_models(models) out = latent.copy() out["samples"] = samples return (out, ) NODE_CLASS_MAPPINGS = { "BNK_NoisyLatentImage": NoisyLatentImage, #"BNK_DuplicateBatchIndex": DuplicateBatchIndex, "BNK_SlerpLatent": LatentSlerp, "BNK_GetSigma": GetSigma, "BNK_InjectNoise": InjectNoise, "BNK_Unsampler": Unsampler, } NODE_DISPLAY_NAME_MAPPINGS = { "BNK_NoisyLatentImage": "Noisy Latent Image", #"BNK_DuplicateBatchIndex": "Duplicate Batch Index", "BNK_SlerpLatent": "Slerp Latents", "BNK_GetSigma": "Get Sigma", "BNK_InjectNoise": "Inject Noise", "BNK_Unsampler": "Unsampler", }