--- license: apache-2.0 base_model: distilbert/distilroberta-base tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.801254136909946 - name: Recall type: recall value: 0.8429540040315191 - name: F1 type: f1 value: 0.821575281300232 - name: Accuracy type: accuracy value: 0.9685663231476382 --- # distilroberta-base-finetuned-ner-lenerBr This model is a fine-tuned version of [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.1550 - Precision: 0.8013 - Recall: 0.8430 - F1: 0.8216 - Accuracy: 0.9686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 490 | 0.1750 | 0.7347 | 0.6581 | 0.6942 | 0.9465 | | 0.2808 | 2.0 | 980 | 0.1642 | 0.6954 | 0.7598 | 0.7262 | 0.9538 | | 0.093 | 3.0 | 1470 | 0.1849 | 0.6708 | 0.7992 | 0.7294 | 0.9510 | | 0.0557 | 4.0 | 1960 | 0.1403 | 0.7807 | 0.8345 | 0.8067 | 0.9668 | | 0.0366 | 5.0 | 2450 | 0.1560 | 0.7775 | 0.8466 | 0.8106 | 0.9626 | | 0.027 | 6.0 | 2940 | 0.1612 | 0.7342 | 0.8239 | 0.7764 | 0.9621 | | 0.0204 | 7.0 | 3430 | 0.1632 | 0.7625 | 0.8356 | 0.7974 | 0.9644 | | 0.015 | 8.0 | 3920 | 0.1748 | 0.7375 | 0.8442 | 0.7873 | 0.9615 | | 0.0135 | 9.0 | 4410 | 0.1547 | 0.7930 | 0.8446 | 0.8180 | 0.9685 | | 0.0101 | 10.0 | 4900 | 0.1550 | 0.8013 | 0.8430 | 0.8216 | 0.9686 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1