ReHiFace-S / model_lib /base_wrapper /onnx_model_picklable.py
GuijiAI's picture
Upload 117 files
89cf463 verified
# -- coding: utf-8 --
# @Time : 2021/11/29
# @Author : ykk648
# @Project : https://github.com/ykk648/AI_power
# -*-coding: utf-8 -*-
import onnxruntime
import numpy as np
from cv2box import MyFpsCounter
def init_session(onnx_path, provider='gpu'):
if provider == 'gpu':
providers = (
"CUDAExecutionProvider",
{'device_id': 0, }
)
elif provider == 'trt':
providers = (
'TensorrtExecutionProvider',
{'trt_engine_cache_enable': True, 'trt_fp16_enable': False, }
)
elif provider == 'trt16':
providers = (
'TensorrtExecutionProvider',
{'trt_engine_cache_enable': True, 'trt_fp16_enable': True, }
)
elif provider == 'trt8':
providers = (
'TensorrtExecutionProvider',
{'trt_engine_cache_enable': True, 'trt_int8_enable': True, }
)
else:
providers = "CPUExecutionProvider"
# onnxruntime.set_default_logger_severity(3)
session_options = onnxruntime.SessionOptions()
session_options.log_severity_level = 3
onnx_session = onnxruntime.InferenceSession(onnx_path, session_options, providers=[providers])
return onnx_session
class OnnxModelPickable: # This is a wrapper to make the current InferenceSession class pickable.
def __init__(self, onnx_path, provider='gpu'):
self.onnx_path = onnx_path
self.provider = provider
# self.onnx_session = init_session(self.onnx_path, self.provider)
def get_input_feed(self, input_name, image_tensor):
"""
input_feed={self.input_name: image_tensor}
:param input_name:
:param image_tensor:
:return:
"""
input_feed = {}
for name in input_name:
input_feed[name] = image_tensor
return input_feed
def get_output_info(self, onnx_session):
"""
output_name = onnx_session.get_outputs()[0].name
:param onnx_session:
:return:
"""
output_name = []
output_shape = []
for node in onnx_session.get_outputs():
output_name.append(node.name)
output_shape.append(node.shape)
return output_name, output_shape
def get_input_info(self, onnx_session):
"""
input_name = onnx_session.get_inputs()[0].name
:param onnx_session:
:return:
"""
input_name = []
input_shape = []
for node in onnx_session.get_inputs():
input_name.append(node.name)
input_shape.append(node.shape)
return input_name, input_shape
def forward(self, image_tensor, trans=False):
'''
image_tensor = image.transpose(2, 0, 1)
image_tensor = image_tensor[np.newaxis, :]
onnx_session.run([output_name], {input_name: x})
:param image_tensor:
:return:
'''
# 输入数据的类型必须与模型一致,以下三种写法都是可以的
# scores, boxes = self.onnx_session.run(None, {self.input_name: image_tensor})
# scores, boxes = self.onnx_session.run(self.output_name, input_feed={self.input_name: image_tensor})
if trans:
image_tensor = image_tensor.transpose(2, 0, 1)
image_tensor = image_tensor[np.newaxis, :]
image_tensor = np.ascontiguousarray(image_tensor)
input_name, _ = self.get_input_info(self.onnx_session)
output_name, _ = self.get_output_info(self.onnx_session)
input_feed = self.get_input_feed(input_name, image_tensor)
return self.onnx_session.run(output_name, input_feed=input_feed)
def __getstate__(self):
return {
'onnx_path': self.onnx_path,
'provider': self.provider,
}
def __setstate__(self, values):
self.onnx_path = values['onnx_path']
self.provider = values['provider']
self.onnx_session = init_session(self.onnx_path, self.provider)