--- library_name: transformers license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9138952914059928 - name: Recall type: recall value: 0.9341972399865365 - name: F1 type: f1 value: 0.9239347536617842 - name: Accuracy type: accuracy value: 0.9820156590333785 --- # bert-finetuned-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0748 - Precision: 0.9139 - Recall: 0.9342 - F1: 0.9239 - Accuracy: 0.9820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0937 | 1.0 | 1756 | 0.0894 | 0.8737 | 0.9010 | 0.8872 | 0.9733 | | 0.045 | 2.0 | 3512 | 0.0833 | 0.9117 | 0.9258 | 0.9187 | 0.9802 | | 0.0299 | 3.0 | 5268 | 0.0748 | 0.9139 | 0.9342 | 0.9239 | 0.9820 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.2