--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: HamzaSidhu786/distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # HamzaSidhu786/distilhubert-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8269 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1788 | 1.0 | 57 | 2.0907 | 0.39 | | 1.6561 | 2.0 | 114 | 1.5747 | 0.62 | | 1.3464 | 3.0 | 171 | 1.4279 | 0.57 | | 1.1727 | 4.0 | 228 | 1.1862 | 0.68 | | 0.9399 | 5.0 | 285 | 1.0572 | 0.66 | | 0.931 | 6.0 | 342 | 1.1268 | 0.66 | | 0.7375 | 7.0 | 399 | 0.8744 | 0.77 | | 0.5798 | 8.0 | 456 | 0.8596 | 0.78 | | 0.5668 | 9.0 | 513 | 0.8253 | 0.76 | | 0.4972 | 10.0 | 570 | 0.8273 | 0.76 | | 0.2375 | 11.0 | 627 | 0.8192 | 0.76 | | 0.1913 | 12.0 | 684 | 0.7618 | 0.83 | | 0.2132 | 13.0 | 741 | 0.8249 | 0.82 | | 0.0823 | 14.0 | 798 | 0.8962 | 0.81 | | 0.0444 | 15.0 | 855 | 0.9376 | 0.78 | | 0.0375 | 16.0 | 912 | 0.8609 | 0.81 | | 0.0298 | 17.0 | 969 | 0.8741 | 0.83 | | 0.0808 | 18.0 | 1026 | 0.8911 | 0.84 | | 0.0453 | 19.0 | 1083 | 0.8756 | 0.84 | | 0.0229 | 20.0 | 1140 | 0.8269 | 0.83 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1