File size: 5,759 Bytes
38e81ce
 
 
490094d
38e81ce
 
 
 
 
 
 
 
 
 
 
 
490094d
38e81ce
490094d
38e81ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70dd6ca
 
490094d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38e81ce
 
 
 
70dd6ca
38e81ce
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
library_name: transformers
license: mit
base_model: Moustapha91/speecht5_finetuned_wo_v1
tags:
- generated_from_trainer
model-index:
- name: speecht5_tts_wolof
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_tts_wolof

This model is a fine-tuned version of [Moustapha91/speecht5_finetuned_wo_v1](https://huggingface.co/Moustapha91/speecht5_finetuned_wo_v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2943

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.9404        | 0.5952  | 50   | 0.4362          |
| 0.8342        | 1.1905  | 100  | 0.3784          |
| 0.7869        | 1.7857  | 150  | 0.3627          |
| 0.7841        | 2.3810  | 200  | 0.3546          |
| 0.762         | 2.9762  | 250  | 0.3489          |
| 0.7487        | 3.5714  | 300  | 0.3431          |
| 0.7423        | 4.1667  | 350  | 0.3392          |
| 0.7211        | 4.7619  | 400  | 0.3362          |
| 0.7147        | 5.3571  | 450  | 0.3304          |
| 0.7097        | 5.9524  | 500  | 0.3266          |
| 0.7058        | 6.5476  | 550  | 0.3223          |
| 0.6929        | 7.1429  | 600  | 0.3198          |
| 0.6887        | 7.7381  | 650  | 0.3152          |
| 0.664         | 8.3333  | 700  | 0.3131          |
| 0.6736        | 8.9286  | 750  | 0.3115          |
| 0.6767        | 9.5238  | 800  | 0.3105          |
| 0.6722        | 10.1190 | 850  | 0.3095          |
| 0.6702        | 10.7143 | 900  | 0.3075          |
| 0.6615        | 11.3095 | 950  | 0.3058          |
| 0.6654        | 11.9048 | 1000 | 0.3063          |
| 0.6682        | 12.5    | 1050 | 0.3083          |
| 0.6607        | 13.0952 | 1100 | 0.3051          |
| 0.6514        | 13.6905 | 1150 | 0.3042          |
| 0.6605        | 14.2857 | 1200 | 0.3041          |
| 0.6509        | 14.8810 | 1250 | 0.3028          |
| 0.6556        | 15.4762 | 1300 | 0.3025          |
| 0.6477        | 16.0714 | 1350 | 0.3019          |
| 0.6489        | 16.6667 | 1400 | 0.3011          |
| 0.6567        | 17.2619 | 1450 | 0.3007          |
| 0.6533        | 17.8571 | 1500 | 0.3016          |
| 0.6489        | 18.4524 | 1550 | 0.3009          |
| 0.6454        | 19.0476 | 1600 | 0.3002          |
| 0.6354        | 19.6429 | 1650 | 0.2992          |
| 0.645         | 20.2381 | 1700 | 0.2996          |
| 0.6376        | 20.8333 | 1750 | 0.2993          |
| 0.6472        | 21.4286 | 1800 | 0.2991          |
| 0.6571        | 22.0238 | 1850 | 0.2995          |
| 0.6333        | 22.6190 | 1900 | 0.2986          |
| 0.6323        | 23.2143 | 1950 | 0.2973          |
| 0.6314        | 23.8095 | 2000 | 0.2980          |
| 0.6437        | 24.4048 | 2050 | 0.2980          |
| 0.6383        | 25.0    | 2100 | 0.2977          |
| 0.6314        | 25.5952 | 2150 | 0.2978          |
| 0.6309        | 26.1905 | 2200 | 0.2965          |
| 0.6365        | 26.7857 | 2250 | 0.2965          |
| 0.6406        | 27.3810 | 2300 | 0.2966          |
| 0.6286        | 27.9762 | 2350 | 0.2968          |
| 0.6279        | 28.5714 | 2400 | 0.2963          |
| 0.6304        | 29.1667 | 2450 | 0.2967          |
| 0.6457        | 29.7619 | 2500 | 0.2960          |
| 0.6372        | 30.3571 | 2550 | 0.2958          |
| 0.6338        | 30.9524 | 2600 | 0.2952          |
| 0.6325        | 31.5476 | 2650 | 0.2956          |
| 0.6313        | 32.1429 | 2700 | 0.2951          |
| 0.6345        | 32.7381 | 2750 | 0.2956          |
| 0.6289        | 33.3333 | 2800 | 0.2949          |
| 0.6264        | 33.9286 | 2850 | 0.2947          |
| 0.6302        | 34.5238 | 2900 | 0.2952          |
| 0.6248        | 35.1190 | 2950 | 0.2945          |
| 0.626         | 35.7143 | 3000 | 0.2945          |
| 0.6248        | 36.3095 | 3050 | 0.2947          |
| 0.6306        | 36.9048 | 3100 | 0.2943          |
| 0.6258        | 37.5    | 3150 | 0.2944          |
| 0.6318        | 38.0952 | 3200 | 0.2947          |
| 0.6279        | 38.6905 | 3250 | 0.2947          |
| 0.628         | 39.2857 | 3300 | 0.2940          |
| 0.632         | 39.8810 | 3350 | 0.2947          |
| 0.6259        | 40.4762 | 3400 | 0.2939          |
| 0.6305        | 41.0714 | 3450 | 0.2943          |
| 0.6381        | 41.6667 | 3500 | 0.2939          |
| 0.6341        | 42.2619 | 3550 | 0.2942          |
| 0.6163        | 42.8571 | 3600 | 0.2937          |
| 0.6256        | 43.4524 | 3650 | 0.2934          |
| 0.628         | 44.0476 | 3700 | 0.2934          |
| 0.6371        | 44.6429 | 3750 | 0.2945          |
| 0.6209        | 45.2381 | 3800 | 0.2930          |
| 0.6285        | 45.8333 | 3850 | 0.2939          |
| 0.6309        | 46.4286 | 3900 | 0.2938          |
| 0.6216        | 47.0238 | 3950 | 0.2935          |
| 0.6352        | 47.6190 | 4000 | 0.2943          |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0