Hezam commited on
Commit
94c274b
1 Parent(s): f23b115

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ar
4
+ metrics:
5
+ - Accuracy
6
+ - F1_score
7
+ - BLEU
8
+ library_name: transformers
9
+ pipeline_tag: text2text-generation
10
+ tags:
11
+ - t5
12
+ - text2text-generation
13
+ - seq2seq
14
+ - Classification and Generation
15
+ - Classification
16
+ - Generation
17
+ - ArabicT5
18
+ - Text Classification
19
+ - Text2Text Generation
20
+ widget:
21
+ - example_title: "الرياضة"
22
+ - text: >
23
+ خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس
24
+ ---
25
+
26
+ # ArabicT5: Classification and Generation of Arabic News
27
+ - The model is under trial
28
+
29
+ # The number in the generated text represents the category of the news, as shown below:
30
+ category_mapping = {
31
+
32
+ 'Political':1,
33
+ 'Economy':2,
34
+ 'Health':3,
35
+ 'Sport':4,
36
+ 'Culture':5,
37
+ 'Technology':6,
38
+ 'Art':7,
39
+ 'Accidents':8
40
+ }
41
+
42
+
43
+ # Example usage
44
+ ```python
45
+
46
+ from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline
47
+
48
+ model_name="Hezam/ArabicT5-news-classification-generation-45GB-base"
49
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
50
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
51
+ generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
52
+
53
+ text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس"
54
+
55
+ output= generation_pipeline(text,
56
+ num_beams=10,
57
+ max_length=512,
58
+ top_p=0.9,
59
+ repetition_penalty = 3.0,
60
+ no_repeat_ngram_size = 3)[0]["generated_text"]
61
+
62
+ print(output)