File size: 2,551 Bytes
4d60e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
library_name: peft
tags:
- trl
- reward-trainer
- generated_from_trainer
metrics:
- accuracy
base_model: google/gemma-2b
model-index:
- name: RM-HH-Mix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RM-HH-Mix_harmless_gpt3_20000_gemma2b_shuffleFalse_extractchosenTrue

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1257
- Accuracy: 0.9465

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8425        | 0.06  | 250  | 0.8667          | 0.5565   |
| 0.7359        | 0.11  | 500  | 0.5129          | 0.774    |
| 0.6491        | 0.17  | 750  | 0.3182          | 0.8645   |
| 0.6171        | 0.22  | 1000 | 0.2427          | 0.904    |
| 0.5956        | 0.28  | 1250 | 0.1885          | 0.925    |
| 0.5504        | 0.33  | 1500 | 0.1771          | 0.928    |
| 0.5778        | 0.39  | 1750 | 0.1663          | 0.931    |
| 0.574         | 0.44  | 2000 | 0.1533          | 0.937    |
| 0.614         | 0.5   | 2250 | 0.1523          | 0.9355   |
| 0.5568        | 0.56  | 2500 | 0.1427          | 0.9395   |
| 0.5474        | 0.61  | 2750 | 0.1300          | 0.9435   |
| 0.5179        | 0.67  | 3000 | 0.1308          | 0.944    |
| 0.5643        | 0.72  | 3250 | 0.1231          | 0.947    |
| 0.5704        | 0.78  | 3500 | 0.1262          | 0.9465   |
| 0.5348        | 0.83  | 3750 | 0.1275          | 0.946    |
| 0.5388        | 0.89  | 4000 | 0.1256          | 0.947    |
| 0.5579        | 0.94  | 4250 | 0.1257          | 0.9465   |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2