loubnabnl HF staff commited on
Commit
0a3fbf4
1 Parent(s): 0a0a7c2
README.md CHANGED
@@ -1,12 +1,22 @@
1
  ---
2
- library_name: transformers
3
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
4
  language:
5
  - en
6
  ---
7
 
8
 
9
- # SmolLM-Instruct
10
 
11
  <center>
12
  <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
@@ -15,14 +25,27 @@ language:
15
 
16
  ## Model Summary
17
 
18
- SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are built on Cosmo-Corpus, a meticulously curated high-quality training dataset. Cosmo-Corpus includes Cosmopedia v2 (28B tokens of synthetic textbooks and stories generated by Mixtral), Python-Edu (4B tokens of educational Python samples from The Stack), and FineWeb-Edu (220B tokens of deduplicated educational web samples from FineWeb). For duther details, we refer to our blogpost TODO.
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- To build SmolLM-Instruct, we instruction tuned the models using publicly available permissive instruction datasets. We trained all three models for one epoch on the permissive subset of the WebInstructSub dataset, combined with StarCoder2-Self-OSS-Instruct. Following this, we performed DPO (Direct Preference Optimization) for one epoch: using HelpSteer for the 135M and 1.7B models, and argilla/dpo-mix-7k for the 360M model. We followed the training parameters from the Zephyr-Gemma recipe in the alignment handbook, but adjusted the SFT (Supervised Fine-Tuning) learning rate to 3e-4.
21
- [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
22
 
23
- This is the SmolLM-135M-Instruct.
 
24
 
25
- ### Generation
 
 
26
  ```bash
27
  pip install transformers
28
  ```
@@ -37,17 +60,32 @@ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
37
  # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
38
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
39
 
40
- messages = [{"role": "user", "content": "List the steps to bake a chocolate cake from scratch."}]
41
  input_text=tokenizer.apply_chat_template(messages, tokenize=False)
42
  print(input_text)
43
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
44
- outputs = model.generate(inputs, max_new_tokens=100, temperature=0.6, top_p=0.92, do_sample=True)
45
  print(tokenizer.decode(outputs[0]))
46
  ```
47
 
48
- # Limitations
 
 
 
 
 
 
 
 
 
49
 
50
- While SmolLM models have been trained on a diverse dataset including educational content and synthetic texts, they have limitations. The models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. For a more comprehensive discussion of the models' capabilities and limitations, please refer to our full blog post.
 
 
 
 
 
 
51
 
52
  # Citation
53
  ```bash
 
1
  ---
 
2
  license: apache-2.0
3
+ base_model: HuggingFaceTB/SmolLM-135M
4
+ tags:
5
+ - alignment-handbook
6
+ - trl
7
+ - sft
8
+ datasets:
9
+ - Magpie-Align/Magpie-Pro-300K-Filtered
10
+ - bigcode/self-oss-instruct-sc2-exec-filter-50k
11
+ - teknium/OpenHermes-2.5
12
+ - HuggingFaceTB/everyday-conversations-llama3.1-2k
13
+ library_name: transformers
14
  language:
15
  - en
16
  ---
17
 
18
 
19
+ # SmolLM-135M-Instruct
20
 
21
  <center>
22
  <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
 
25
 
26
  ## Model Summary
27
 
28
+ SmolLM is a series of small language models available in three sizes: 135M, 360M, and 1.7B parameters.
29
+
30
+ These models are trained on [SmolLM-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus), a curated collection of high-quality educational and synthetic data designed for training LLMs. For further details, we refer to our [blogpost](https://huggingface.co/blog/smollm).
31
+
32
+ To build SmolLM-Instruct, we finetune the base models on publicly available datasets.
33
+
34
+ ## Changelog
35
+
36
+ |Release|Description|
37
+ |-|-|
38
+ |v0.1| Initial release of SmolLM-Instruct. We finetune on the permissive subset of the WebInstructSub dataset, combined with StarCoder2-Self-OSS-Instruct. Then, we perform DPO (Direct Preference Optimization) for one epoch on HelpSteer for the 135M and 1.7B models, and argilla/dpo-mix-7k for the 360M model.|
39
+ |v0.2| We changed the finetuning mix to datasets more suitable for smol models. We train on a new dataset of 2k simple everyday conversations we generated by llama3.1-70B [everyday-conversations-llama3.1-2k](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k/), [Magpie-Pro-300K-Filtere](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered), [self-oss-instruct-sc2-exec-filter-50k](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k), and a small subset of [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5)|
40
 
41
+ ## Usage
 
42
 
43
+ ### Local Applications
44
+ ⚡ For local applications, you can find optimized implementations of the model in MLC, GGUF and Transformers.js formats, in addition to fast in-browser demos in this collection: https://huggingface.co/collections/HuggingFaceTB/local-smollms-66c0f3b2a15b4eed7fb198d0
45
 
46
+ We noticed that 4bit quantization degrades the quality of the 135M and 360M, so we use `q016` for MLC and ONNX/Transformers.js checkpoints for the WebGPU demos. We also suggest using temperature 0.2 and top-p 0.9.
47
+
48
+ ### Transformers
49
  ```bash
50
  pip install transformers
51
  ```
 
60
  # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
61
  model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
62
 
63
+ messages = [{"role": "user", "content": "What is the capital of France."}]
64
  input_text=tokenizer.apply_chat_template(messages, tokenize=False)
65
  print(input_text)
66
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
67
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
68
  print(tokenizer.decode(outputs[0]))
69
  ```
70
 
71
+ ### Chat in TRL
72
+ You can also use the TRL CLI to chat with the model from the terminal:
73
+ ```bash
74
+ pip install trl
75
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM-135M-Instruct --device cpu
76
+ ```
77
+
78
+ ## Limitations
79
+
80
+ Additionally, the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data, we invite users to leverage them as assistive tools rather than definitive sources of information. We find that they can handle general knowledge questions, creative writing and basic Python programming. But they are English only and may have difficulty with arithmetics, editing tasks and complex reasoning. For more details about the models' capabilities, please refer to our [blog post](https://huggingface.co/blog/smollm).
81
 
82
+ ## Training parameters
83
+ We train the models using the [alignement-handbook](https://github.com/huggingface/alignment-handbook) with the datasets mentioned in the changelog, using these parameters for v0.2:
84
+ - 1 epoch
85
+ - lr 1e-3
86
+ - cosine schedule
87
+ - warmup ratio 0.1
88
+ - global batch size 262k tokens
89
 
90
  # Citation
91
  ```bash
all_results.json DELETED
@@ -1,22 +0,0 @@
1
- {
2
- "epoch": 0.9872958257713249,
3
- "eval_logits/chosen": -0.02468078024685383,
4
- "eval_logits/rejected": 0.17850716412067413,
5
- "eval_logps/chosen": -147.27601623535156,
6
- "eval_logps/rejected": -190.00872802734375,
7
- "eval_loss": 0.6824025511741638,
8
- "eval_rewards/accuracies": 0.5833333134651184,
9
- "eval_rewards/chosen": -0.011536384001374245,
10
- "eval_rewards/margins": 0.022468576207756996,
11
- "eval_rewards/rejected": -0.03400496393442154,
12
- "eval_runtime": 5.069,
13
- "eval_samples": 464,
14
- "eval_samples_per_second": 91.536,
15
- "eval_steps_per_second": 2.959,
16
- "total_flos": 0.0,
17
- "train_loss": 0.6879464878755457,
18
- "train_runtime": 373.787,
19
- "train_samples": 8806,
20
- "train_samples_per_second": 23.559,
21
- "train_steps_per_second": 0.182
22
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "HuggingFaceTB/cosmo2-135M-webinst-sc2",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
 
1
  {
2
+ "_name_or_path": "HuggingFaceTB/SmolLM-135M",
3
  "architectures": [
4
  "LlamaForCausalLM"
5
  ],
eval_results.json DELETED
@@ -1,16 +0,0 @@
1
- {
2
- "epoch": 0.9872958257713249,
3
- "eval_logits/chosen": -0.02468078024685383,
4
- "eval_logits/rejected": 0.17850716412067413,
5
- "eval_logps/chosen": -147.27601623535156,
6
- "eval_logps/rejected": -190.00872802734375,
7
- "eval_loss": 0.6824025511741638,
8
- "eval_rewards/accuracies": 0.5833333134651184,
9
- "eval_rewards/chosen": -0.011536384001374245,
10
- "eval_rewards/margins": 0.022468576207756996,
11
- "eval_rewards/rejected": -0.03400496393442154,
12
- "eval_runtime": 5.069,
13
- "eval_samples": 464,
14
- "eval_samples_per_second": 91.536,
15
- "eval_steps_per_second": 2.959
16
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33e43441217210b529ffc7a25b90cb17a82e3ada35b4c3bde44287eace3ffa0d
3
  size 269060552
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1464c9ebccc6fb497aa4ccc8d74d29b33f9a9eddc4638a4575719357f532f2d
3
  size 269060552
onnx/model.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f7070c56c534cbcf259887da40752d740bb3964596d8301b6eeac96da12306b
3
- size 539013915
 
 
 
 
onnx/model_bnb4.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b106bd8705e8630f96e45b3d098e034ef2f2ecd0ed49f0cb35ca9e9cadd50ef
3
- size 174093003
 
 
 
 
onnx/model_fp16.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9835b31b322470f9a530b665e8b2f6fe9ca7aabdd8881ba14df6d1699aa4ddeb
3
- size 270023849
 
 
 
 
onnx/model_int8.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b0c6b05bc81e37c6ffe0c1b3c83b876762168ebdaa027e43123edc9924f0c1e
3
- size 135804132
 
 
 
 
onnx/model_q4.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:44c5a6a26ebb19a5cf67f48ee2ae563b2cce862d98c35f3b88fdae1d43772f4f
3
- size 180726933
 
 
 
 
onnx/model_q4f16.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:17895a70ce168d8dd771ef354ed0e1907e7f30f2a909f59621814788b10d8bdc
3
- size 117438167
 
 
 
 
onnx/model_quantized.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b0c6b05bc81e37c6ffe0c1b3c83b876762168ebdaa027e43123edc9924f0c1e
3
- size 135804132
 
 
 
 
onnx/model_uint8.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7fc153cda4a4a85c729ff55541b0de5b6f10ebe7c8bf7c4b61522284b2b4659
3
- size 135804236
 
 
 
 
runs/Jul15_23-01-23_ip-26-0-167-245/events.out.tfevents.1721084621.ip-26-0-167-245.4063478.0 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:137a44c3c12285b0d9da936a6a99d7456d661f209fb349d8357a02f35eeda4a3
3
- size 10291
 
 
 
 
runs/Jul15_23-01-23_ip-26-0-167-245/events.out.tfevents.1721085009.ip-26-0-167-245.4063478.1 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:83bb55b2a1d8dcebdea334b1730745674464d573603f20649d7cd9cb2f329bb9
3
- size 815
 
 
 
 
special_tokens_map.json CHANGED
@@ -1,29 +1,23 @@
1
  {
2
  "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>"
 
 
 
 
 
 
 
 
 
 
 
 
5
  ],
6
- "bos_token": {
7
- "content": "<|im_start|>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false
12
- },
13
- "eos_token": {
14
- "content": "<|im_end|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false
19
- },
20
- "pad_token": {
21
- "content": "<|im_end|>",
22
- "lstrip": false,
23
- "normalized": false,
24
- "rstrip": false,
25
- "single_word": false
26
- },
27
  "unk_token": {
28
  "content": "<|endoftext|>",
29
  "lstrip": false,
 
1
  {
2
  "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
  ],
18
+ "bos_token": "<|im_start|>",
19
+ "eos_token": "<|im_end|>",
20
+ "pad_token": "<|im_end|>",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  "unk_token": {
22
  "content": "<|endoftext|>",
23
  "lstrip": false,
train_results.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "epoch": 0.9872958257713249,
3
- "total_flos": 0.0,
4
- "train_loss": 0.6879464878755457,
5
- "train_runtime": 373.787,
6
- "train_samples": 8806,
7
- "train_samples_per_second": 23.559,
8
- "train_steps_per_second": 0.182
9
- }
 
 
 
 
 
 
 
 
 
 
trainer_state.json DELETED
@@ -1,147 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 0.9872958257713249,
5
- "eval_steps": 100,
6
- "global_step": 68,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.014519056261343012,
13
- "grad_norm": 2.4859837489271306,
14
- "learning_rate": 7.142857142857143e-07,
15
- "logits/chosen": 0.09337720274925232,
16
- "logits/rejected": 0.09554587304592133,
17
- "logps/chosen": -152.76107788085938,
18
- "logps/rejected": -188.5344696044922,
19
- "loss": 0.6931,
20
- "rewards/accuracies": 0.0,
21
- "rewards/chosen": 0.0,
22
- "rewards/margins": 0.0,
23
- "rewards/rejected": 0.0,
24
- "step": 1
25
- },
26
- {
27
- "epoch": 0.14519056261343014,
28
- "grad_norm": 1.9129959728137063,
29
- "learning_rate": 4.970219740227693e-06,
30
- "logits/chosen": 0.5112766027450562,
31
- "logits/rejected": 0.892162561416626,
32
- "logps/chosen": -149.86944580078125,
33
- "logps/rejected": -192.12844848632812,
34
- "loss": 0.6935,
35
- "rewards/accuracies": 0.3958333432674408,
36
- "rewards/chosen": -0.0032075627241283655,
37
- "rewards/margins": -0.0028414721600711346,
38
- "rewards/rejected": -0.0003660905349534005,
39
- "step": 10
40
- },
41
- {
42
- "epoch": 0.29038112522686027,
43
- "grad_norm": 6.387926383082319,
44
- "learning_rate": 4.460299516441777e-06,
45
- "logits/chosen": 0.7456380128860474,
46
- "logits/rejected": 0.9128583073616028,
47
- "logps/chosen": -145.0723876953125,
48
- "logps/rejected": -185.00823974609375,
49
- "loss": 0.692,
50
- "rewards/accuracies": 0.5249999761581421,
51
- "rewards/chosen": -0.002810679841786623,
52
- "rewards/margins": -0.0024495997931808233,
53
- "rewards/rejected": -0.00036108028143644333,
54
- "step": 20
55
- },
56
- {
57
- "epoch": 0.4355716878402904,
58
- "grad_norm": 2.851603494816296,
59
- "learning_rate": 3.441819734087963e-06,
60
- "logits/chosen": 0.6626991033554077,
61
- "logits/rejected": 0.8471162915229797,
62
- "logps/chosen": -145.3153076171875,
63
- "logps/rejected": -191.17898559570312,
64
- "loss": 0.6882,
65
- "rewards/accuracies": 0.53125,
66
- "rewards/chosen": -0.002587886294350028,
67
- "rewards/margins": 0.008108791895210743,
68
- "rewards/rejected": -0.010696678422391415,
69
- "step": 30
70
- },
71
- {
72
- "epoch": 0.5807622504537205,
73
- "grad_norm": 2.4335402011634337,
74
- "learning_rate": 2.1790041121336223e-06,
75
- "logits/chosen": 0.8962385058403015,
76
- "logits/rejected": 1.0721851587295532,
77
- "logps/chosen": -192.60690307617188,
78
- "logps/rejected": -232.34994506835938,
79
- "loss": 0.6874,
80
- "rewards/accuracies": 0.543749988079071,
81
- "rewards/chosen": -0.022678321227431297,
82
- "rewards/margins": 0.01420576311647892,
83
- "rewards/rejected": -0.03688408061861992,
84
- "step": 40
85
- },
86
- {
87
- "epoch": 0.7259528130671506,
88
- "grad_norm": 4.774287308012212,
89
- "learning_rate": 9.994642986290797e-07,
90
- "logits/chosen": 0.9905160665512085,
91
- "logits/rejected": 1.3741340637207031,
92
- "logps/chosen": -162.32839965820312,
93
- "logps/rejected": -209.26821899414062,
94
- "loss": 0.6823,
95
- "rewards/accuracies": 0.59375,
96
- "rewards/chosen": -0.002683633007109165,
97
- "rewards/margins": 0.022018445655703545,
98
- "rewards/rejected": -0.024702081456780434,
99
- "step": 50
100
- },
101
- {
102
- "epoch": 0.8711433756805808,
103
- "grad_norm": 3.010894871763621,
104
- "learning_rate": 2.092077387824884e-07,
105
- "logits/chosen": 0.9261436462402344,
106
- "logits/rejected": 1.0222227573394775,
107
- "logps/chosen": -149.97549438476562,
108
- "logps/rejected": -182.0010528564453,
109
- "loss": 0.6835,
110
- "rewards/accuracies": 0.625,
111
- "rewards/chosen": -0.006383872590959072,
112
- "rewards/margins": 0.01851298287510872,
113
- "rewards/rejected": -0.024896854534745216,
114
- "step": 60
115
- },
116
- {
117
- "epoch": 0.9872958257713249,
118
- "step": 68,
119
- "total_flos": 0.0,
120
- "train_loss": 0.6879464878755457,
121
- "train_runtime": 373.787,
122
- "train_samples_per_second": 23.559,
123
- "train_steps_per_second": 0.182
124
- }
125
- ],
126
- "logging_steps": 10,
127
- "max_steps": 68,
128
- "num_input_tokens_seen": 0,
129
- "num_train_epochs": 1,
130
- "save_steps": 500,
131
- "stateful_callbacks": {
132
- "TrainerControl": {
133
- "args": {
134
- "should_epoch_stop": false,
135
- "should_evaluate": false,
136
- "should_log": false,
137
- "should_save": false,
138
- "should_training_stop": false
139
- },
140
- "attributes": {}
141
- }
142
- },
143
- "total_flos": 0.0,
144
- "train_batch_size": 2,
145
- "trial_name": null,
146
- "trial_params": null
147
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1814eb0fd93a0e71c87ba00ea1cd711059a7d8a7330086cef2bc0cc556aa6647
3
- size 6520