Initial commit
Browse files- .gitattributes +1 -0
- README.md +66 -0
- args.yml +75 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-Pendulum-v1.zip +3 -0
- ppo-Pendulum-v1/_stable_baselines3_version +1 -0
- ppo-Pendulum-v1/data +99 -0
- ppo-Pendulum-v1/policy.optimizer.pth +3 -0
- ppo-Pendulum-v1/policy.pth +3 -0
- ppo-Pendulum-v1/pytorch_variables.pth +3 -0
- ppo-Pendulum-v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -336.60 +/- 406.53
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env Pendulum-v1 -orga HumanCompatibleAI -f logs/
|
41 |
+
python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga HumanCompatibleAI
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('clip_range', 0.2),
|
54 |
+
('ent_coef', 0.0),
|
55 |
+
('gae_lambda', 0.95),
|
56 |
+
('gamma', 0.9),
|
57 |
+
('learning_rate', 0.001),
|
58 |
+
('n_envs', 4),
|
59 |
+
('n_epochs', 10),
|
60 |
+
('n_steps', 1024),
|
61 |
+
('n_timesteps', 100000.0),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('sde_sample_freq', 4),
|
64 |
+
('use_sde', True),
|
65 |
+
('normalize', False)])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- rl-trained-agents
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - pruner
|
45 |
+
- median
|
46 |
+
- - sampler
|
47 |
+
- tpe
|
48 |
+
- - save_freq
|
49 |
+
- -1
|
50 |
+
- - save_replay_buffer
|
51 |
+
- false
|
52 |
+
- - seed
|
53 |
+
- 1867484813
|
54 |
+
- - storage
|
55 |
+
- null
|
56 |
+
- - study_name
|
57 |
+
- null
|
58 |
+
- - tensorboard_log
|
59 |
+
- ''
|
60 |
+
- - track
|
61 |
+
- false
|
62 |
+
- - trained_agent
|
63 |
+
- ''
|
64 |
+
- - truncate_last_trajectory
|
65 |
+
- true
|
66 |
+
- - uuid
|
67 |
+
- false
|
68 |
+
- - vec_env
|
69 |
+
- dummy
|
70 |
+
- - verbose
|
71 |
+
- 1
|
72 |
+
- - wandb_entity
|
73 |
+
- null
|
74 |
+
- - wandb_project_name
|
75 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - clip_range
|
3 |
+
- 0.2
|
4 |
+
- - ent_coef
|
5 |
+
- 0.0
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.95
|
8 |
+
- - gamma
|
9 |
+
- 0.9
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_epochs
|
15 |
+
- 10
|
16 |
+
- - n_steps
|
17 |
+
- 1024
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - sde_sample_freq
|
23 |
+
- 4
|
24 |
+
- - use_sde
|
25 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4bd693f82b9e4089d5ac764b148dad2e1410a01ebf2b4d8add2eff3e32db789
|
3 |
+
size 139146
|
ppo-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
ppo-Pendulum-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f708aee2af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f708aee2b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f708aee2c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f708aee2ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f708aee2d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f708aee2dc0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f708aee2e50>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f708aee2ee0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f708aee2f70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f708aee6040>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f708aee60d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f708aee4090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
3
|
29 |
+
],
|
30 |
+
"low": "[-1. -1. -8.]",
|
31 |
+
"high": "[1. 1. 8.]",
|
32 |
+
"bounded_below": "[ True True True]",
|
33 |
+
"bounded_above": "[ True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"low": "[-2.]",
|
44 |
+
"high": "[2.]",
|
45 |
+
"bounded_below": "[ True]",
|
46 |
+
"bounded_above": "[ True]",
|
47 |
+
"_np_random": "RandomState(MT19937)"
|
48 |
+
},
|
49 |
+
"n_envs": 4,
|
50 |
+
"num_timesteps": 102400,
|
51 |
+
"_total_timesteps": 100000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1658759207.2481482,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": true,
|
73 |
+
"sde_sample_freq": 4,
|
74 |
+
"_current_progress_remaining": -0.02400000000000002,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjpPCvMd2YMCUhpRSlIwBbJRLyIwBdJRHQFJ2QgLZzxR1fZQoaAZoCWgPQwhyNEdWfokZwJSGlFKUaBVLyGgWR0BSdjWkJrtWdX2UKGgGaAloD0MIahK8Ic1YcMCUhpRSlGgVS8hoFkdAUnYmTkhib3V9lChoBmgJaA9DCFtc4zMZ73XAlIaUUpRoFUvIaBZHQFJ2F7Uoa1l1fZQoaAZoCWgPQwgH7kCdsmBxwJSGlFKUaBVLyGgWR0BSgvjn3cpLdX2UKGgGaAloD0MIjUP9LqygcsCUhpRSlGgVS8hoFkdAUoLst03fh3V9lChoBmgJaA9DCNIA3gJJrHDAlIaUUpRoFUvIaBZHQFKC3UQTVUd1fZQoaAZoCWgPQwheSIeHMOFgwJSGlFKUaBVLyGgWR0BSgs63iJfqdX2UKGgGaAloD0MI5bZ9j/qEX8CUhpRSlGgVS8hoFkdAUo+yhSLqEHV9lChoBmgJaA9DCO9054nnEWDAlIaUUpRoFUvIaBZHQFKPp3os7Mh1fZQoaAZoCWgPQwiXN4drNaJgwJSGlFKUaBVLyGgWR0BSj5hScbzcdX2UKGgGaAloD0MIBBxClZqDX8CUhpRSlGgVS8hoFkdAUo+Jzkp7TnV9lChoBmgJaA9DCGuDE9Gv+1/AlIaUUpRoFUvIaBZHQFKcz8P4EfV1fZQoaAZoCWgPQwhW16GaUpJwwJSGlFKUaBVLyGgWR0BSnMQZn+Q2dX2UKGgGaAloD0MIxohEoSXCcMCUhpRSlGgVS8hoFkdAUpy0mdAgPnV9lChoBmgJaA9DCAAce/bcPWDAlIaUUpRoFUvIaBZHQFKcphWo3rF1fZQoaAZoCWgPQwhUxVT6CR1gwJSGlFKUaBVLyGgWR0BTNqlLvkR0dX2UKGgGaAloD0MI3EjZImkuX8CUhpRSlGgVS8hoFkdAUzadvsJID3V9lChoBmgJaA9DCFG9NbDVRmDAlIaUUpRoFUvIaBZHQFM2jopx3mp1fZQoaAZoCWgPQwjxSpLn+h1gwJSGlFKUaBVLyGgWR0BTNoBV+7UYdX2UKGgGaAloD0MIJXUCmgjSYMCUhpRSlGgVS8hoFkdAU0ZJiAlOXXV9lChoBmgJaA9DCCnqzD0kU3HAlIaUUpRoFUvIaBZHQFNGPOIInjR1fZQoaAZoCWgPQwjgg9cubVtuwJSGlFKUaBVLyGgWR0BTRi1JDmbLdX2UKGgGaAloD0MIbD6uDRX8X8CUhpRSlGgVS8hoFkdAU0YewLVnVXV9lChoBmgJaA9DCKQ33EfudmDAlIaUUpRoFUvIaBZHQFNSzOHFglZ1fZQoaAZoCWgPQwjo9LwbCytgwJSGlFKUaBVLyGgWR0BTUsC9ytFKdX2UKGgGaAloD0MIA7ABESKGccCUhpRSlGgVS8hoFkdAU1KxptaY/nV9lChoBmgJaA9DCEFl/PuMlGDAlIaUUpRoFUvIaBZHQFNSox59mYl1fZQoaAZoCWgPQwi5wVCHFf1fwJSGlFKUaBVLyGgWR0BTXuxwAEMcdX2UKGgGaAloD0MInUmbqrvYccCUhpRSlGgVS8hoFkdAU17guRLbpXV9lChoBmgJaA9DCP+UKlH2NnDAlIaUUpRoFUvIaBZHQFNe0SAYpDx1fZQoaAZoCWgPQwguG53zUwdxwJSGlFKUaBVLyGgWR0BTXsKPXCj2dX2UKGgGaAloD0MITvG4qFaUesCUhpRSlGgVS8hoFkdAU2spON5t33V9lChoBmgJaA9DCDo7GRylRmDAlIaUUpRoFUvIaBZHQFNrHQQcxTN1fZQoaAZoCWgPQwghlWJH415twJSGlFKUaBVLyGgWR0BTaw31jAi3dX2UKGgGaAloD0MIFR+fkB2WYMCUhpRSlGgVS8hoFkdAU2r/aQFLWnV9lChoBmgJaA9DCLdhFASPPV/AlIaUUpRoFUvIaBZHQFP5zzErGzd1fZQoaAZoCWgPQwhuaqD5nFNgwJSGlFKUaBVLyGgWR0BT+cMAmzBzdX2UKGgGaAloD0MI6bga2ZVgYMCUhpRSlGgVS8hoFkdAU/m0E5hjOXV9lChoBmgJaA9DCLr0L0lltW/AlIaUUpRoFUvIaBZHQFP5pc5bQkZ1fZQoaAZoCWgPQwjDZ+vgYC/9v5SGlFKUaBVLyGgWR0BUBkLDye7MdX2UKGgGaAloD0MIzO80mTGed8CUhpRSlGgVS8hoFkdAVAY3R5TqB3V9lChoBmgJaA9DCOdz7na9/nDAlIaUUpRoFUvIaBZHQFQGKAJ9iMJ1fZQoaAZoCWgPQwijBWhbTalvwJSGlFKUaBVLyGgWR0BUBhmTTvy9dX2UKGgGaAloD0MI+Uz2z5PWcMCUhpRSlGgVS8hoFkdAVBSKsMiKSHV9lChoBmgJaA9DCC9rYoGviATAlIaUUpRoFUvIaBZHQFQUgA6uGK11fZQoaAZoCWgPQwiL4lXWtqZwwJSGlFKUaBVLyGgWR0BUFHJo0ygxdX2UKGgGaAloD0MI3ZiesMRjAsCUhpRSlGgVS8hoFkdAVBRl6JIlMXV9lChoBmgJaA9DCHEC02ndaV/AlIaUUpRoFUvIaBZHQFQmm/336AR1fZQoaAZoCWgPQwj3deCcESX1v5SGlFKUaBVLyGgWR0BUJo+8oQWfdX2UKGgGaAloD0MImgtcHutrYMCUhpRSlGgVS8hoFkdAVCaAQQL/j3V9lChoBmgJaA9DCIU/w5s1+Oe/lIaUUpRoFUvIaBZHQFQmcclw97p1fZQoaAZoCWgPQwicpPljmrtywJSGlFKUaBVLyGgWR0BUM0fs/pt8dX2UKGgGaAloD0MIouvCD86n6b+UhpRSlGgVS8hoFkdAVDM8yN4qw3V9lChoBmgJaA9DCK1QpPu5DWDAlIaUUpRoFUvIaBZHQFQ1a0QbuMN1fZQoaAZoCWgPQwgTSfQyioZfwJSGlFKUaBVLyGgWR0BUNV98Z1mrdX2UKGgGaAloD0MIV5boLDPhYMCUhpRSlGgVS8hoFkdAVMmHJtBOYnV9lChoBmgJaA9DCPKVQEpstXjAlIaUUpRoFUvIaBZHQFTJetjkMkR1fZQoaAZoCWgPQwjaklUR7nNgwJSGlFKUaBVLyGgWR0BUyWxD9fkWdX2UKGgGaAloD0MIppnudVLjYMCUhpRSlGgVS8hoFkdAVMldv863iXV9lChoBmgJaA9DCN53DI991GDAlIaUUpRoFUvIaBZHQFTWIP9UCJZ1fZQoaAZoCWgPQwg2qz5XW1xgwJSGlFKUaBVLyGgWR0BU1hWLgn+idX2UKGgGaAloD0MIF/VJ7jDdYMCUhpRSlGgVS8hoFkdAVNYGPgeijHV9lChoBmgJaA9DCGtI3GOpc3DAlIaUUpRoFUvIaBZHQFTV987ZFod1fZQoaAZoCWgPQwgD0v4HWGNfwJSGlFKUaBVLyGgWR0BU4mZRbbDedX2UKGgGaAloD0MIlBYuq7CrdcCUhpRSlGgVS8hoFkdAVOJar3j+73V9lChoBmgJaA9DCGmpvB3huF/AlIaUUpRoFUvIaBZHQFTiSzPa+N91fZQoaAZoCWgPQwjEzD6PUaBfwJSGlFKUaBVLyGgWR0BU4jy8SPELdX2UKGgGaAloD0MI1XlU/N97XsCUhpRSlGgVS8hoFkdAVO6u9vjwQXV9lChoBmgJaA9DCDvfT42XHHDAlIaUUpRoFUvIaBZHQFTuo0ALiMp1fZQoaAZoCWgPQwhjYvNxbaj0v5SGlFKUaBVLyGgWR0BU7pQ53kgfdX2UKGgGaAloD0MIjIS2nEtpd8CUhpRSlGgVS8hoFkdAVO6GM4tHx3V9lChoBmgJaA9DCLbXgt6bvGDAlIaUUpRoFUvIaBZHQFT7ULlV94N1fZQoaAZoCWgPQwjnxvSEJbxywJSGlFKUaBVLyGgWR0BU+0RaouPFdX2UKGgGaAloD0MITI3Qz9RYYMCUhpRSlGgVS8hoFkdAVPs0zj3mFXV9lChoBmgJaA9DCAVvSKMCWWDAlIaUUpRoFUvIaBZHQFT7JlrdnCh1fZQoaAZoCWgPQwhmvRjKyVZ3wJSGlFKUaBVLyGgWR0BVmarWAf+1dX2UKGgGaAloD0MIAFRx41b0dsCUhpRSlGgVS8hoFkdAVZmfXf642HV9lChoBmgJaA9DCEbvVMA9rwLAlIaUUpRoFUvIaBZHQFWZkLQXyiF1fZQoaAZoCWgPQwgJF/IIbuT8v5SGlFKUaBVLyGgWR0BVmYI8hcJMdX2UKGgGaAloD0MIOXtntFWJ8r+UhpRSlGgVS8hoFkdAVaYBXCCSR3V9lChoBmgJaA9DCGq8dJOYSWDAlIaUUpRoFUvIaBZHQFWl9bor4Fl1fZQoaAZoCWgPQwg/jubIys8PwJSGlFKUaBVLyGgWR0BVpeYx+KCQdX2UKGgGaAloD0MIuY5xxUWyd8CUhpRSlGgVS8hoFkdAVaXYbsF+u3V9lChoBmgJaA9DCKA4gH5fH2DAlIaUUpRoFUvIaBZHQFWyKr7wazh1fZQoaAZoCWgPQwg1XrpJjF9gwJSGlFKUaBVLyGgWR0BVsh5Pdl/ZdX2UKGgGaAloD0MIlgfpKXIdYMCUhpRSlGgVS8hoFkdAVbIPPLPldXV9lChoBmgJaA9DCK8/ic8d0GDAlIaUUpRoFUvIaBZHQFWyAKv3ai91fZQoaAZoCWgPQwhy3ZTyGlhwwJSGlFKUaBVLyGgWR0BV20HlfZ27dX2UKGgGaAloD0MIDyvc8hHhYMCUhpRSlGgVS8hoFkdAVds2eg+Ql3V9lChoBmgJaA9DCN0jm6tmfWDAlIaUUpRoFUvIaBZHQFXbJyQxN7B1fZQoaAZoCWgPQwgv+grSjC9fwJSGlFKUaBVLyGgWR0BV2xib2Dg7dX2UKGgGaAloD0MI7KaU10oIYMCUhpRSlGgVS8hoFkdAVeeFmFrVOXV9lChoBmgJaA9DCG+df7vsV+2/lIaUUpRoFUvIaBZHQFXneVcD8tR1fZQoaAZoCWgPQwhWKxN+qfNewJSGlFKUaBVLyGgWR0BV52oR7JGOdX2UKGgGaAloD0MIhGQBE7hFYMCUhpRSlGgVS8hoFkdAVedbnoxHoXV9lChoBmgJaA9DCFMFo5I6KWDAlIaUUpRoFUvIaBZHQFXzmMOwxFl1fZQoaAZoCWgPQwhrfZHQlvPov5SGlFKUaBVLyGgWR0BV840Q9RrKdX2UKGgGaAloD0MIDwpK0UrhYMCUhpRSlGgVS8hoFkdAVfN9iMHbAXV9lChoBmgJaA9DCPMAFvl1NWDAlIaUUpRoFUvIaBZHQFXzbwBo24x1ZS4="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 250,
|
84 |
+
"n_steps": 1024,
|
85 |
+
"gamma": 0.9,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6268fddd3f5501ae4bd68c7da9e32a3cce8d0a80e3f360ba472a9b0bdfd91ae6
|
3 |
+
size 78871
|
ppo-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b138cb692f3fddb67a0015036b3374d642f2744c1fc44d19776aa77b862ffec9
|
3 |
+
size 40254
|
ppo-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea712fbe50a84013ce4e23f94663d59927551fa721c246294b3fdd38d49ad672
|
3 |
+
size 138013
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -336.60077279999996, "std_reward": 406.5254085374081, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-25T16:30:45.639168"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a66775a65923ae2f631af7881b6b21f958ac3e55dde12361d15848ccda69f0ec
|
3 |
+
size 15547
|