ernestum commited on
Commit
404c2d1
1 Parent(s): 65c75a7

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -336.60 +/- 406.53
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Pendulum-v1
20
+ type: Pendulum-v1
21
+ ---
22
+
23
+ # **PPO** Agent playing **Pendulum-v1**
24
+ This is a trained model of a **PPO** agent playing **Pendulum-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env Pendulum-v1 -orga HumanCompatibleAI -f logs/
41
+ python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env Pendulum-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga HumanCompatibleAI
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('clip_range', 0.2),
54
+ ('ent_coef', 0.0),
55
+ ('gae_lambda', 0.95),
56
+ ('gamma', 0.9),
57
+ ('learning_rate', 0.001),
58
+ ('n_envs', 4),
59
+ ('n_epochs', 10),
60
+ ('n_steps', 1024),
61
+ ('n_timesteps', 100000.0),
62
+ ('policy', 'MlpPolicy'),
63
+ ('sde_sample_freq', 4),
64
+ ('use_sde', True),
65
+ ('normalize', False)])
66
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - Pendulum-v1
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - rl-trained-agents
20
+ - - log_interval
21
+ - -1
22
+ - - max_total_trials
23
+ - null
24
+ - - n_eval_envs
25
+ - 1
26
+ - - n_evaluations
27
+ - null
28
+ - - n_jobs
29
+ - 1
30
+ - - n_startup_trials
31
+ - 10
32
+ - - n_timesteps
33
+ - -1
34
+ - - n_trials
35
+ - 500
36
+ - - no_optim_plots
37
+ - false
38
+ - - num_threads
39
+ - -1
40
+ - - optimization_log_path
41
+ - null
42
+ - - optimize_hyperparameters
43
+ - false
44
+ - - pruner
45
+ - median
46
+ - - sampler
47
+ - tpe
48
+ - - save_freq
49
+ - -1
50
+ - - save_replay_buffer
51
+ - false
52
+ - - seed
53
+ - 1867484813
54
+ - - storage
55
+ - null
56
+ - - study_name
57
+ - null
58
+ - - tensorboard_log
59
+ - ''
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - clip_range
3
+ - 0.2
4
+ - - ent_coef
5
+ - 0.0
6
+ - - gae_lambda
7
+ - 0.95
8
+ - - gamma
9
+ - 0.9
10
+ - - learning_rate
11
+ - 0.001
12
+ - - n_envs
13
+ - 4
14
+ - - n_epochs
15
+ - 10
16
+ - - n_steps
17
+ - 1024
18
+ - - n_timesteps
19
+ - 100000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - sde_sample_freq
23
+ - 4
24
+ - - use_sde
25
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4bd693f82b9e4089d5ac764b148dad2e1410a01ebf2b4d8add2eff3e32db789
3
+ size 139146
ppo-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-Pendulum-v1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f708aee2af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f708aee2b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f708aee2c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f708aee2ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f708aee2d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f708aee2dc0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f708aee2e50>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f708aee2ee0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f708aee2f70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f708aee6040>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f708aee60d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f708aee4090>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 3
29
+ ],
30
+ "low": "[-1. -1. -8.]",
31
+ "high": "[1. 1. 8.]",
32
+ "bounded_below": "[ True True True]",
33
+ "bounded_above": "[ True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 1
42
+ ],
43
+ "low": "[-2.]",
44
+ "high": "[2.]",
45
+ "bounded_below": "[ True]",
46
+ "bounded_above": "[ True]",
47
+ "_np_random": "RandomState(MT19937)"
48
+ },
49
+ "n_envs": 4,
50
+ "num_timesteps": 102400,
51
+ "_total_timesteps": 100000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1658759207.2481482,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
59
+ },
60
+ "tensorboard_log": null,
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": null,
71
+ "_episode_num": 0,
72
+ "use_sde": true,
73
+ "sde_sample_freq": 4,
74
+ "_current_progress_remaining": -0.02400000000000002,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjpPCvMd2YMCUhpRSlIwBbJRLyIwBdJRHQFJ2QgLZzxR1fZQoaAZoCWgPQwhyNEdWfokZwJSGlFKUaBVLyGgWR0BSdjWkJrtWdX2UKGgGaAloD0MIahK8Ic1YcMCUhpRSlGgVS8hoFkdAUnYmTkhib3V9lChoBmgJaA9DCFtc4zMZ73XAlIaUUpRoFUvIaBZHQFJ2F7Uoa1l1fZQoaAZoCWgPQwgH7kCdsmBxwJSGlFKUaBVLyGgWR0BSgvjn3cpLdX2UKGgGaAloD0MIjUP9LqygcsCUhpRSlGgVS8hoFkdAUoLst03fh3V9lChoBmgJaA9DCNIA3gJJrHDAlIaUUpRoFUvIaBZHQFKC3UQTVUd1fZQoaAZoCWgPQwheSIeHMOFgwJSGlFKUaBVLyGgWR0BSgs63iJfqdX2UKGgGaAloD0MI5bZ9j/qEX8CUhpRSlGgVS8hoFkdAUo+yhSLqEHV9lChoBmgJaA9DCO9054nnEWDAlIaUUpRoFUvIaBZHQFKPp3os7Mh1fZQoaAZoCWgPQwiXN4drNaJgwJSGlFKUaBVLyGgWR0BSj5hScbzcdX2UKGgGaAloD0MIBBxClZqDX8CUhpRSlGgVS8hoFkdAUo+Jzkp7TnV9lChoBmgJaA9DCGuDE9Gv+1/AlIaUUpRoFUvIaBZHQFKcz8P4EfV1fZQoaAZoCWgPQwhW16GaUpJwwJSGlFKUaBVLyGgWR0BSnMQZn+Q2dX2UKGgGaAloD0MIxohEoSXCcMCUhpRSlGgVS8hoFkdAUpy0mdAgPnV9lChoBmgJaA9DCAAce/bcPWDAlIaUUpRoFUvIaBZHQFKcphWo3rF1fZQoaAZoCWgPQwhUxVT6CR1gwJSGlFKUaBVLyGgWR0BTNqlLvkR0dX2UKGgGaAloD0MI3EjZImkuX8CUhpRSlGgVS8hoFkdAUzadvsJID3V9lChoBmgJaA9DCFG9NbDVRmDAlIaUUpRoFUvIaBZHQFM2jopx3mp1fZQoaAZoCWgPQwjxSpLn+h1gwJSGlFKUaBVLyGgWR0BTNoBV+7UYdX2UKGgGaAloD0MIJXUCmgjSYMCUhpRSlGgVS8hoFkdAU0ZJiAlOXXV9lChoBmgJaA9DCCnqzD0kU3HAlIaUUpRoFUvIaBZHQFNGPOIInjR1fZQoaAZoCWgPQwjgg9cubVtuwJSGlFKUaBVLyGgWR0BTRi1JDmbLdX2UKGgGaAloD0MIbD6uDRX8X8CUhpRSlGgVS8hoFkdAU0YewLVnVXV9lChoBmgJaA9DCKQ33EfudmDAlIaUUpRoFUvIaBZHQFNSzOHFglZ1fZQoaAZoCWgPQwjo9LwbCytgwJSGlFKUaBVLyGgWR0BTUsC9ytFKdX2UKGgGaAloD0MIA7ABESKGccCUhpRSlGgVS8hoFkdAU1KxptaY/nV9lChoBmgJaA9DCEFl/PuMlGDAlIaUUpRoFUvIaBZHQFNSox59mYl1fZQoaAZoCWgPQwi5wVCHFf1fwJSGlFKUaBVLyGgWR0BTXuxwAEMcdX2UKGgGaAloD0MInUmbqrvYccCUhpRSlGgVS8hoFkdAU17guRLbpXV9lChoBmgJaA9DCP+UKlH2NnDAlIaUUpRoFUvIaBZHQFNe0SAYpDx1fZQoaAZoCWgPQwguG53zUwdxwJSGlFKUaBVLyGgWR0BTXsKPXCj2dX2UKGgGaAloD0MITvG4qFaUesCUhpRSlGgVS8hoFkdAU2spON5t33V9lChoBmgJaA9DCDo7GRylRmDAlIaUUpRoFUvIaBZHQFNrHQQcxTN1fZQoaAZoCWgPQwghlWJH415twJSGlFKUaBVLyGgWR0BTaw31jAi3dX2UKGgGaAloD0MIFR+fkB2WYMCUhpRSlGgVS8hoFkdAU2r/aQFLWnV9lChoBmgJaA9DCLdhFASPPV/AlIaUUpRoFUvIaBZHQFP5zzErGzd1fZQoaAZoCWgPQwhuaqD5nFNgwJSGlFKUaBVLyGgWR0BT+cMAmzBzdX2UKGgGaAloD0MI6bga2ZVgYMCUhpRSlGgVS8hoFkdAU/m0E5hjOXV9lChoBmgJaA9DCLr0L0lltW/AlIaUUpRoFUvIaBZHQFP5pc5bQkZ1fZQoaAZoCWgPQwjDZ+vgYC/9v5SGlFKUaBVLyGgWR0BUBkLDye7MdX2UKGgGaAloD0MIzO80mTGed8CUhpRSlGgVS8hoFkdAVAY3R5TqB3V9lChoBmgJaA9DCOdz7na9/nDAlIaUUpRoFUvIaBZHQFQGKAJ9iMJ1fZQoaAZoCWgPQwijBWhbTalvwJSGlFKUaBVLyGgWR0BUBhmTTvy9dX2UKGgGaAloD0MI+Uz2z5PWcMCUhpRSlGgVS8hoFkdAVBSKsMiKSHV9lChoBmgJaA9DCC9rYoGviATAlIaUUpRoFUvIaBZHQFQUgA6uGK11fZQoaAZoCWgPQwiL4lXWtqZwwJSGlFKUaBVLyGgWR0BUFHJo0ygxdX2UKGgGaAloD0MI3ZiesMRjAsCUhpRSlGgVS8hoFkdAVBRl6JIlMXV9lChoBmgJaA9DCHEC02ndaV/AlIaUUpRoFUvIaBZHQFQmm/336AR1fZQoaAZoCWgPQwj3deCcESX1v5SGlFKUaBVLyGgWR0BUJo+8oQWfdX2UKGgGaAloD0MImgtcHutrYMCUhpRSlGgVS8hoFkdAVCaAQQL/j3V9lChoBmgJaA9DCIU/w5s1+Oe/lIaUUpRoFUvIaBZHQFQmcclw97p1fZQoaAZoCWgPQwicpPljmrtywJSGlFKUaBVLyGgWR0BUM0fs/pt8dX2UKGgGaAloD0MIouvCD86n6b+UhpRSlGgVS8hoFkdAVDM8yN4qw3V9lChoBmgJaA9DCK1QpPu5DWDAlIaUUpRoFUvIaBZHQFQ1a0QbuMN1fZQoaAZoCWgPQwgTSfQyioZfwJSGlFKUaBVLyGgWR0BUNV98Z1mrdX2UKGgGaAloD0MIV5boLDPhYMCUhpRSlGgVS8hoFkdAVMmHJtBOYnV9lChoBmgJaA9DCPKVQEpstXjAlIaUUpRoFUvIaBZHQFTJetjkMkR1fZQoaAZoCWgPQwjaklUR7nNgwJSGlFKUaBVLyGgWR0BUyWxD9fkWdX2UKGgGaAloD0MIppnudVLjYMCUhpRSlGgVS8hoFkdAVMldv863iXV9lChoBmgJaA9DCN53DI991GDAlIaUUpRoFUvIaBZHQFTWIP9UCJZ1fZQoaAZoCWgPQwg2qz5XW1xgwJSGlFKUaBVLyGgWR0BU1hWLgn+idX2UKGgGaAloD0MIF/VJ7jDdYMCUhpRSlGgVS8hoFkdAVNYGPgeijHV9lChoBmgJaA9DCGtI3GOpc3DAlIaUUpRoFUvIaBZHQFTV987ZFod1fZQoaAZoCWgPQwgD0v4HWGNfwJSGlFKUaBVLyGgWR0BU4mZRbbDedX2UKGgGaAloD0MIlBYuq7CrdcCUhpRSlGgVS8hoFkdAVOJar3j+73V9lChoBmgJaA9DCGmpvB3huF/AlIaUUpRoFUvIaBZHQFTiSzPa+N91fZQoaAZoCWgPQwjEzD6PUaBfwJSGlFKUaBVLyGgWR0BU4jy8SPELdX2UKGgGaAloD0MI1XlU/N97XsCUhpRSlGgVS8hoFkdAVO6u9vjwQXV9lChoBmgJaA9DCDvfT42XHHDAlIaUUpRoFUvIaBZHQFTuo0ALiMp1fZQoaAZoCWgPQwhjYvNxbaj0v5SGlFKUaBVLyGgWR0BU7pQ53kgfdX2UKGgGaAloD0MIjIS2nEtpd8CUhpRSlGgVS8hoFkdAVO6GM4tHx3V9lChoBmgJaA9DCLbXgt6bvGDAlIaUUpRoFUvIaBZHQFT7ULlV94N1fZQoaAZoCWgPQwjnxvSEJbxywJSGlFKUaBVLyGgWR0BU+0RaouPFdX2UKGgGaAloD0MITI3Qz9RYYMCUhpRSlGgVS8hoFkdAVPs0zj3mFXV9lChoBmgJaA9DCAVvSKMCWWDAlIaUUpRoFUvIaBZHQFT7JlrdnCh1fZQoaAZoCWgPQwhmvRjKyVZ3wJSGlFKUaBVLyGgWR0BVmarWAf+1dX2UKGgGaAloD0MIAFRx41b0dsCUhpRSlGgVS8hoFkdAVZmfXf642HV9lChoBmgJaA9DCEbvVMA9rwLAlIaUUpRoFUvIaBZHQFWZkLQXyiF1fZQoaAZoCWgPQwgJF/IIbuT8v5SGlFKUaBVLyGgWR0BVmYI8hcJMdX2UKGgGaAloD0MIOXtntFWJ8r+UhpRSlGgVS8hoFkdAVaYBXCCSR3V9lChoBmgJaA9DCGq8dJOYSWDAlIaUUpRoFUvIaBZHQFWl9bor4Fl1fZQoaAZoCWgPQwg/jubIys8PwJSGlFKUaBVLyGgWR0BVpeYx+KCQdX2UKGgGaAloD0MIuY5xxUWyd8CUhpRSlGgVS8hoFkdAVaXYbsF+u3V9lChoBmgJaA9DCKA4gH5fH2DAlIaUUpRoFUvIaBZHQFWyKr7wazh1fZQoaAZoCWgPQwg1XrpJjF9gwJSGlFKUaBVLyGgWR0BVsh5Pdl/ZdX2UKGgGaAloD0MIlgfpKXIdYMCUhpRSlGgVS8hoFkdAVbIPPLPldXV9lChoBmgJaA9DCK8/ic8d0GDAlIaUUpRoFUvIaBZHQFWyAKv3ai91fZQoaAZoCWgPQwhy3ZTyGlhwwJSGlFKUaBVLyGgWR0BV20HlfZ27dX2UKGgGaAloD0MIDyvc8hHhYMCUhpRSlGgVS8hoFkdAVds2eg+Ql3V9lChoBmgJaA9DCN0jm6tmfWDAlIaUUpRoFUvIaBZHQFXbJyQxN7B1fZQoaAZoCWgPQwgv+grSjC9fwJSGlFKUaBVLyGgWR0BV2xib2Dg7dX2UKGgGaAloD0MI7KaU10oIYMCUhpRSlGgVS8hoFkdAVeeFmFrVOXV9lChoBmgJaA9DCG+df7vsV+2/lIaUUpRoFUvIaBZHQFXneVcD8tR1fZQoaAZoCWgPQwhWKxN+qfNewJSGlFKUaBVLyGgWR0BV52oR7JGOdX2UKGgGaAloD0MIhGQBE7hFYMCUhpRSlGgVS8hoFkdAVedbnoxHoXV9lChoBmgJaA9DCFMFo5I6KWDAlIaUUpRoFUvIaBZHQFXzmMOwxFl1fZQoaAZoCWgPQwhrfZHQlvPov5SGlFKUaBVLyGgWR0BV840Q9RrKdX2UKGgGaAloD0MIDwpK0UrhYMCUhpRSlGgVS8hoFkdAVfN9iMHbAXV9lChoBmgJaA9DCPMAFvl1NWDAlIaUUpRoFUvIaBZHQFXzbwBo24x1ZS4="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 250,
84
+ "n_steps": 1024,
85
+ "gamma": 0.9,
86
+ "gae_lambda": 0.95,
87
+ "ent_coef": 0.0,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 64,
91
+ "n_epochs": 10,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2hvbWUvbS9Eb2N1bWVudHMvQ0hBSS92ZW52L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
ppo-Pendulum-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6268fddd3f5501ae4bd68c7da9e32a3cce8d0a80e3f360ba472a9b0bdfd91ae6
3
+ size 78871
ppo-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b138cb692f3fddb67a0015036b3374d642f2744c1fc44d19776aa77b862ffec9
3
+ size 40254
ppo-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.29 #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea712fbe50a84013ce4e23f94663d59927551fa721c246294b3fdd38d49ad672
3
+ size 138013
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -336.60077279999996, "std_reward": 406.5254085374081, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-25T16:30:45.639168"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66775a65923ae2f631af7881b6b21f958ac3e55dde12361d15848ccda69f0ec
3
+ size 15547