Initial commit
Browse files- README.md +26 -9
- args.yml +13 -7
- env_kwargs.yml +1 -1
- ppo-Pendulum-v1.zip +2 -2
- ppo-Pendulum-v1/_stable_baselines3_version +1 -1
- ppo-Pendulum-v1/data +56 -50
- ppo-Pendulum-v1/policy.optimizer.pth +2 -2
- ppo-Pendulum-v1/policy.pth +2 -2
- ppo-Pendulum-v1/system_info.txt +9 -7
- replay.mp4 +2 -2
- results.json +1 -1
- train_eval_metrics.zip +2 -2
README.md
CHANGED
@@ -8,16 +8,17 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: -336.89 +/- 406.36
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: Pendulum-v1
|
20 |
type: Pendulum-v1
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# **PPO** Agent playing **Pendulum-v1**
|
@@ -35,17 +36,28 @@ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
|
35 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
39 |
# Download model and save it into the logs/ folder
|
40 |
-
python -m
|
41 |
-
python enjoy
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
```
|
43 |
|
44 |
## Training (with the RL Zoo)
|
45 |
```
|
46 |
-
python train
|
47 |
# Upload the model and generate video (when possible)
|
48 |
-
python -m
|
49 |
```
|
50 |
|
51 |
## Hyperparameters
|
@@ -64,3 +76,8 @@ OrderedDict([('clip_range', 0.2),
|
|
64 |
('use_sde', True),
|
65 |
('normalize', False)])
|
66 |
```
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: Pendulum-v1
|
16 |
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -189.25 +/- 66.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
# **PPO** Agent playing **Pendulum-v1**
|
|
|
36 |
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
```
|
45 |
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga HumanCompatibleAI -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Pendulum-v1 -orga HumanCompatibleAI -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env Pendulum-v1 -f logs/
|
54 |
```
|
55 |
|
56 |
## Training (with the RL Zoo)
|
57 |
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env Pendulum-v1 -f logs/
|
59 |
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga HumanCompatibleAI
|
61 |
```
|
62 |
|
63 |
## Hyperparameters
|
|
|
76 |
('use_sde', True),
|
77 |
('normalize', False)])
|
78 |
```
|
79 |
+
|
80 |
+
# Environment Arguments
|
81 |
+
```python
|
82 |
+
{'render_mode': 'rgb_array'}
|
83 |
+
```
|
args.yml
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
- - - algo
|
3 |
- ppo
|
|
|
|
|
4 |
- - device
|
5 |
- cpu
|
6 |
- - env
|
@@ -8,7 +10,7 @@
|
|
8 |
- - env_kwargs
|
9 |
- null
|
10 |
- - eval_episodes
|
11 |
-
-
|
12 |
- - eval_freq
|
13 |
- 25000
|
14 |
- - gym_packages
|
@@ -16,7 +18,7 @@
|
|
16 |
- - hyperparams
|
17 |
- null
|
18 |
- - log_folder
|
19 |
-
-
|
20 |
- - log_interval
|
21 |
- -1
|
22 |
- - max_total_trials
|
@@ -36,11 +38,13 @@
|
|
36 |
- - no_optim_plots
|
37 |
- false
|
38 |
- - num_threads
|
39 |
-
-
|
40 |
- - optimization_log_path
|
41 |
- null
|
42 |
- - optimize_hyperparameters
|
43 |
- false
|
|
|
|
|
44 |
- - pruner
|
45 |
- median
|
46 |
- - sampler
|
@@ -50,15 +54,15 @@
|
|
50 |
- - save_replay_buffer
|
51 |
- false
|
52 |
- - seed
|
53 |
-
-
|
54 |
- - storage
|
55 |
- null
|
56 |
- - study_name
|
57 |
- null
|
58 |
- - tensorboard_log
|
59 |
-
-
|
60 |
- - track
|
61 |
-
-
|
62 |
- - trained_agent
|
63 |
- ''
|
64 |
- - truncate_last_trajectory
|
@@ -72,4 +76,6 @@
|
|
72 |
- - wandb_entity
|
73 |
- null
|
74 |
- - wandb_project_name
|
75 |
-
-
|
|
|
|
|
|
1 |
!!python/object/apply:collections.OrderedDict
|
2 |
- - - algo
|
3 |
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
- - device
|
7 |
- cpu
|
8 |
- - env
|
|
|
10 |
- - env_kwargs
|
11 |
- null
|
12 |
- - eval_episodes
|
13 |
+
- 0
|
14 |
- - eval_freq
|
15 |
- 25000
|
16 |
- - gym_packages
|
|
|
18 |
- - hyperparams
|
19 |
- null
|
20 |
- - log_folder
|
21 |
+
- gymnasium_models
|
22 |
- - log_interval
|
23 |
- -1
|
24 |
- - max_total_trials
|
|
|
38 |
- - no_optim_plots
|
39 |
- false
|
40 |
- - num_threads
|
41 |
+
- 4
|
42 |
- - optimization_log_path
|
43 |
- null
|
44 |
- - optimize_hyperparameters
|
45 |
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
- - pruner
|
49 |
- median
|
50 |
- - sampler
|
|
|
54 |
- - save_replay_buffer
|
55 |
- false
|
56 |
- - seed
|
57 |
+
- 3755125310
|
58 |
- - storage
|
59 |
- null
|
60 |
- - study_name
|
61 |
- null
|
62 |
- - tensorboard_log
|
63 |
+
- ''
|
64 |
- - track
|
65 |
+
- false
|
66 |
- - trained_agent
|
67 |
- ''
|
68 |
- - truncate_last_trajectory
|
|
|
76 |
- - wandb_entity
|
77 |
- null
|
78 |
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
env_kwargs.yml
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
render_mode: rgb_array
|
ppo-Pendulum-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2a5572df0c6d6022519615b76c9e6ca5bce0e7d5cf859ec145cbf99a437b8b0
|
3 |
+
size 137832
|
ppo-Pendulum-v1/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
2.2.0a3
|
ppo-Pendulum-v1/data
CHANGED
@@ -3,65 +3,35 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
-
"observation_space": {
|
24 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
-
"dtype": "float32",
|
27 |
-
"_shape": [
|
28 |
-
3
|
29 |
-
],
|
30 |
-
"low": "[-1. -1. -8.]",
|
31 |
-
"high": "[1. 1. 8.]",
|
32 |
-
"bounded_below": "[ True True True]",
|
33 |
-
"bounded_above": "[ True True True]",
|
34 |
-
"_np_random": null
|
35 |
-
},
|
36 |
-
"action_space": {
|
37 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
-
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
39 |
-
"dtype": "float32",
|
40 |
-
"_shape": [
|
41 |
-
1
|
42 |
-
],
|
43 |
-
"low": "[-2.]",
|
44 |
-
"high": "[2.]",
|
45 |
-
"bounded_below": "[ True]",
|
46 |
-
"bounded_above": "[ True]",
|
47 |
-
"_np_random": "RandomState(MT19937)"
|
48 |
-
},
|
49 |
-
"n_envs": 4,
|
50 |
"num_timesteps": 102400,
|
51 |
"_total_timesteps": 100000,
|
52 |
"_num_timesteps_at_start": 0,
|
53 |
"seed": 0,
|
54 |
"action_noise": null,
|
55 |
-
"start_time":
|
56 |
"learning_rate": {
|
57 |
":type:": "<class 'function'>",
|
58 |
-
":serialized:": "
|
59 |
-
},
|
60 |
-
"tensorboard_log": "runs/Pendulum-v1__ppo__8__1659105255/Pendulum-v1",
|
61 |
-
"lr_schedule": {
|
62 |
-
":type:": "<class 'function'>",
|
63 |
-
":serialized:": "gAWVhQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9tYXhpbWlsaWFuLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
64 |
},
|
|
|
65 |
"_last_obs": null,
|
66 |
"_last_episode_starts": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -72,15 +42,47 @@
|
|
72 |
"use_sde": true,
|
73 |
"sde_sample_freq": 4,
|
74 |
"_current_progress_remaining": -0.02400000000000002,
|
|
|
75 |
"ep_info_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
-
":serialized:": "
|
78 |
},
|
79 |
"ep_success_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
},
|
83 |
"_n_updates": 250,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
"n_steps": 1024,
|
85 |
"gamma": 0.9,
|
86 |
"gae_lambda": 0.95,
|
@@ -91,9 +93,13 @@
|
|
91 |
"n_epochs": 10,
|
92 |
"clip_range": {
|
93 |
":type:": "<class 'function'>",
|
94 |
-
":serialized:": "
|
95 |
},
|
96 |
"clip_range_vf": null,
|
97 |
"normalize_advantage": true,
|
98 |
-
"target_kl": null
|
|
|
|
|
|
|
|
|
99 |
}
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a62b2bee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a62b2bf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a62ab0040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a62ab00d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8a62ab0160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8a62ab01f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a62ab0280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a62ab0310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8a62ab03a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a62ab0430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a62ab04c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a62ab0550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f8a62b26e10>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"num_timesteps": 102400,
|
25 |
"_total_timesteps": 100000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": 0,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1694771152245526076,
|
30 |
"learning_rate": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
|
|
|
|
|
|
|
|
33 |
},
|
34 |
+
"tensorboard_log": null,
|
35 |
"_last_obs": null,
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
42 |
"use_sde": true,
|
43 |
"sde_sample_freq": 4,
|
44 |
"_current_progress_remaining": -0.02400000000000002,
|
45 |
+
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHDGmeYlY2eMAWyUS8iMAXSUR0BGSomw7kn1dX2UKGgGR8AQyaz/p+tsaAdLyGgIR0BGSnVXmvGIdX2UKGgGR8AMLJEH+qBFaAdLyGgIR0BGSmLUCq6wdX2UKGgGR8B5j9ekYXO4aAdLyGgIR0BGSkcbR4QjdX2UKGgGR8APwaxX4j8laAdLyGgIR0BGWjh99c8ldX2UKGgGR8BhPPPE87p3aAdLyGgIR0BGWiPyTY/WdX2UKGgGR8ASjGuLaVUuaAdLyGgIR0BGWhFmWdEtdX2UKGgGR8BwfNFkQPI5aAdLyGgIR0BGWfWlMyrQdX2UKGgGR8CFGldkauOkaAdLyGgIR0BGad+5OJtSdX2UKGgGR8CA5kchC+lCaAdLyGgIR0BGacs+V1OkdX2UKGgGR8BwTm4YrJ8waAdLyGgIR0BGabi6xxDLdX2UKGgGR8CJGHyp71IzaAdLyGgIR0BGaZz5oGpudX2UKGgGR8CA/JUZvUBoaAdLyGgIR0BGeYP5HmRvdX2UKGgGR8Bw3S5VfeDWaAdLyGgIR0BGeW9lEqlQdX2UKGgGR8CIlUYk3S8baAdLyGgIR0BGeVzySV4YdX2UKGgGR8CA40XBxgiNaAdLyGgIR0BGeUExIre7dX2UKGgGR8B5mDK7qY7aaAdLyGgIR0BHNQ6IWP92dX2UKGgGR8CFwBiXpnpTaAdLyGgIR0BHNPvSc9W7dX2UKGgGR8Bg8oYtQKrraAdLyGgIR0BHNOuaF23bdX2UKGgGR8CFQXJlJ6IFaAdLyGgIR0BHNNAkcCHRdX2UKGgGR8Bw8faVUuL8aAdLyGgIR0BHROMl1KXfdX2UKGgGR8CEsaKYzBRAaAdLyGgIR0BHRM7+1jRVdX2UKGgGR8BxDxDRc/t6aAdLyGgIR0BHRLyUcGTtdX2UKGgGR8BxOEgdOqNqaAdLyGgIR0BHRKDbrTpgdX2UKGgGR8B5Fl0cOskqaAdLyGgIR0BHVLsrupjudX2UKGgGR8APgIhQm/nGaAdLyGgIR0BHVKd6LOzIdX2UKGgGR8CIuSpH7P6baAdLyGgIR0BHVJUYKpkxdX2UKGgGR8BwilVsDW9UaAdLyGgIR0BHVHmJWNm2dX2UKGgGR8B55/m8ujASaAdLyGgIR0BHZJ9RaX8gdX2UKGgGR8Bwxb7MxGlRaAdLyGgIR0BHZIuGsV+JdX2UKGgGR8B5YTz9S/CZaAdLyGgIR0BHZHkkrwvydX2UKGgGR8B4OhPAO8TSaAdLyGgIR0BHZF18stkGdX2UKGgGR8CBBlhFVktmaAdLyGgIR0BHdIj4YaYNdX2UKGgGR8B/qcOLBKtgaAdLyGgIR0BHdHTRYzSDdX2UKGgGR8CAtnU4JeE7aAdLyGgIR0BHdGKQ7tAtdX2UKGgGR8CJs/XJYDDCaAdLyGgIR0BHdEidJ8OTdX2UKGgGR8CFAeZAIIGAaAdLyGgIR0BILC/wiJO4dX2UKGgGR8ASqW6bvw3HaAdLyGgIR0BILB1cMVk+dX2UKGgGR8CFEAiFj/dZaAdLyGgIR0BILAsK9f1IdX2UKGgGR8AO3HvMKTjeaAdLyGgIR0BIK++Eh7mddX2UKGgGR8Bwqim/FirlaAdLyGgIR0BIO9pAUtZndX2UKGgGR8BxBMIIF/x2aAdLyGgIR0BIO8YIjW07dX2UKGgGR8ARDbi6xxDLaAdLyGgIR0BIO7OeJ53UdX2UKGgGR8CAKk619fCzaAdLyGgIR0BIO5flZHNHdX2UKGgGR8AXVB4Uvf0maAdLyGgIR0BIS38XN1QqdX2UKGgGR8BheVuYQarFaAdLyGgIR0BIS2rn1WbPdX2UKGgGR8Bw+zhuO0b+aAdLyGgIR0BIS1h9b5dodX2UKGgGR8B27lRUFSsKaAdLyGgIR0BISzzND+irdX2UKGgGR8BhnkF6iTMaaAdLyGgIR0BIW1QIldC3dX2UKGgGR8ARmVgQYk3TaAdLyGgIR0BIW0Gmk30gdX2UKGgGR8Bxb7N0NjLCaAdLyGgIR0BIWy9ugpSadX2UKGgGR8B88+jafzz3aAdLyGgIR0BIWxQBPsRhdX2UKGgGR8B5zzgn+hoNaAdLyGgIR0BIa0DEFW4mdX2UKGgGR8B3x5GH58BuaAdLyGgIR0BIay1/lQuVdX2UKGgGR8AMGXw9aEBbaAdLyGgIR0BIaxsMy8BddX2UKGgGR8Bw9o9Mbm2caAdLyGgIR0BIav9tMwlCdX2UKGgGR8B2t53GGVRlaAdLyGgIR0BJKes5n13/dX2UKGgGR8Bw6IKpkwvhaAdLyGgIR0BJKdkBjnV5dX2UKGgGR8CIvjS1maphaAdLyGgIR0BJKcbaRISUdX2UKGgGR8B3XAnWrfcfaAdLyGgIR0BJKatLcsUZdX2UKGgGR8BxNZV7x/d7aAdLyGgIR0BJOe54GD+SdX2UKGgGR8CA1fZZjhDPaAdLyGgIR0BJOdvsJIDpdX2UKGgGR8BhXzaIvalDaAdLyGgIR0BJOcma6STydX2UKGgGR8CLm4ZqmCRPaAdLyGgIR0BJOa4MF2V3dX2UKGgGR8BhpbdFfAsTaAdLyGgIR0BJSd8Z1mrbdX2UKGgGR8CAx+Ik7fYSaAdLyGgIR0BJSctGus90dX2UKGgGR8Bw69J17pmmaAdLyGgIR0BJSbj1f3N+dX2UKGgGR8CGYiiXY150aAdLyGgIR0BJSZ1FH8TBdX2UKGgGR8CFImAkLQXzaAdLyGgIR0BJWd6C17Y1dX2UKGgGR7/0Q5/9YOlPaAdLyGgIR0BJWcriEQGwdX2UKGgGR8B6bUsoUi6haAdLyGgIR0BJWbiIcinpdX2UKGgGR8BhVVoQFs55aAdLyGgIR0BJWZzgdfb9dX2UKGgGR8BxGVpVS4vwaAdLyGgIR0BJakbo8p1BdX2UKGgGR8B5L/ueBg/kaAdLyGgIR0BJajSPU8V6dX2UKGgGR8B5a3syBTXKaAdLyGgIR0BJaiJO32EkdX2UKGgGR8BgyZoPCl7/aAdLyGgIR0BJagggX/HYdX2UKGgGR8BhzBksjFAFaAdLyGgIR0BKJr2pQ1rJdX2UKGgGR8AOSi9IwudxaAdLyGgIR0BKJqxs2vSudX2UKGgGR8CFY12wmmcfaAdLyGgIR0BKJpo0ygwodX2UKGgGR8B5k8l+mWMTaAdLyGgIR0BKJn6l+EytdX2UKGgGR8BxK7hisny/aAdLyGgIR0BKNpeVs1sMdX2UKGgGR8AD/huO0b97aAdLyGgIR0BKNoMKCxu9dX2UKGgGR8Bw0tmHxjJ/aAdLyGgIR0BKNnKOktVadX2UKGgGR8B5hz2lEZzgaAdLyGgIR0BKNlbNbC79dX2UKGgGR8B41pAfMfRvaAdLyGgIR0BKRmRvFWGRdX2UKGgGR8BwyCVQhwERaAdLyGgIR0BKRlAeJYT1dX2UKGgGR8BwROJUHY6GaAdLyGgIR0BKRj2zv7WNdX2UKGgGR8CAG0yJKraNaAdLyGgIR0BKRiILw4KhdX2UKGgGR8BgpeG21D0EaAdLyGgIR0BKVkz41xbTdX2UKGgGR8CFLb/qgRK6aAdLyGgIR0BKVjh1klNUdX2UKGgGR8AIEP+XJHRUaAdLyGgIR0BKViX6ZYxMdX2UKGgGR8BxHWYjSofkaAdLyGgIR0BKVgo5PuXvdX2UKGgGR8ATcO/cnE2paAdLyGgIR0BKZgiNbTttdX2UKGgGR8Bw+yTnq3VkaAdLyGgIR0BKZfSYw7DEdX2UKGgGR8CFISGIsRQKaAdLyGgIR0BKZeIuXeFddX2UKGgGR8BwuDxaxHG0aAdLyGgIR0BKZcaOxSpBdX2UKGgGR8Bwx9L7GecyaAdLyGgIR0BKdclXzUZvdX2UKGgGR8BxFe3KB/ZvaAdLyGgIR0BKdbTc6/7BdX2UKGgGR8CJEIh+OOsDaAdLyGgIR0BKdaJhvze5dX2UKGgGR8CFBG2pAD7qaAdLyGgIR0BKdYa5wwTNdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
"_n_updates": 250,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoCksDhZRoGHSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True]",
|
60 |
+
"bounded_above": "[ True True True]",
|
61 |
+
"_shape": [
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"low": "[-1. -1. -8.]",
|
65 |
+
"high": "[1. 1. 8.]",
|
66 |
+
"low_repr": "[-1. -1. -8.]",
|
67 |
+
"high_repr": "[1. 1. 8.]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVRgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYBAAAAAAAAAAGUaBRLAYWUaBh0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgQKJYEAAAAAAAAAAAAAMCUaApLAYWUaBh0lFKUjARoaWdolGgQKJYEAAAAAAAAAAAAAECUaApLAYWUaBh0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPIoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True]",
|
75 |
+
"bounded_above": "[ True]",
|
76 |
+
"_shape": [
|
77 |
+
1
|
78 |
+
],
|
79 |
+
"low": "[-2.]",
|
80 |
+
"high": "[2.]",
|
81 |
+
"low_repr": "-2.0",
|
82 |
+
"high_repr": "2.0",
|
83 |
+
"_np_random": "Generator(PCG64)"
|
84 |
+
},
|
85 |
+
"n_envs": 1,
|
86 |
"n_steps": 1024,
|
87 |
"gamma": 0.9,
|
88 |
"gae_lambda": 0.95,
|
|
|
93 |
"n_epochs": 10,
|
94 |
"clip_range": {
|
95 |
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
97 |
},
|
98 |
"clip_range_vf": null,
|
99 |
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
104 |
+
}
|
105 |
}
|
ppo-Pendulum-v1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a97ba3110e2c7500d7371d0b6d4cae11d9458e713b3558c89bf99b2f55872b
|
3 |
+
size 82160
|
ppo-Pendulum-v1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be542f8bb454365173f9e4ea14ab68cabc11b968254a49fb0dbad55bed400c16
|
3 |
+
size 40382
|
ppo-Pendulum-v1/system_info.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
OS: Linux-5.4.0-
|
2 |
-
Python: 3.8.10
|
3 |
-
Stable-Baselines3:
|
4 |
-
PyTorch:
|
5 |
-
GPU Enabled: False
|
6 |
-
Numpy: 1.
|
7 |
-
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.2.0a3
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4ccb77c13e09f524899e42ab016875f30055b24e76e4f43eca6047088e5f14
|
3 |
+
size 174142
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -189.2534682, "std_reward": 66.36133815611241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-19T11:41:58.911400"}
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:690af8420de0d7622537e219353fd187a2691b8cf017e74df2f93166a8b7d477
|
3 |
+
size 15240
|