|
|
|
from fengshen.examples.pegasus.data_utils import ( |
|
_is_control, |
|
_is_punctuation, |
|
_is_whitespace, |
|
_is_chinese_char) |
|
from transformers import PreTrainedTokenizer |
|
from transformers import logging |
|
from typing import List, Optional, Tuple, Union |
|
import collections |
|
import os |
|
import unicodedata |
|
import re |
|
import jieba |
|
import sys |
|
|
|
sys.path.append("../../../../") |
|
|
|
jieba.dt.tmp_dir = os.path.expanduser( |
|
"/cognitive_comp/dongxiaoqun/software/jieba/tmp/") |
|
|
|
jieba.initialize() |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
for index, token in enumerate(tokens): |
|
token = token.rstrip("\n") |
|
vocab[token] = index |
|
return vocab |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class PegasusTokenizer(PreTrainedTokenizer): |
|
|
|
r""" |
|
Construct a Pegasus tokenizer. Based on WordPiece. |
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to |
|
this superclass for more information regarding those methods. |
|
Args: |
|
vocab_file (`str`): |
|
File containing the vocabulary. |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
do_basic_tokenize (`bool`, *optional*, defaults to `True`): |
|
Whether or not to do basic tokenization before WordPiece. |
|
never_split (`Iterable`, *optional*): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
`do_basic_tokenize=True` |
|
unk_token (`str`, *optional*, defaults to `"[UNK]"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
sep_token (`str`, *optional*, defaults to `"[SEP]"`): |
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for |
|
sequence classification or for a text and a question for question answering. It is also used as the last |
|
token of a sequence built with special tokens. |
|
pad_token (`str`, *optional*, defaults to `"[PAD]"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
cls_token (`str`, *optional*, defaults to `"[CLS]"`): |
|
The classifier token which is used when doing sequence classification (classification of the whole sequence |
|
instead of per-token classification). It is the first token of the sequence when built with special tokens. |
|
mask_token (`str`, *optional*, defaults to `"[MASK]"`): |
|
The token used for masking values. This is the token used when training this model with masked language |
|
modeling. This is the token which the model will try to predict. |
|
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this |
|
[issue](https://github.com/huggingface/transformers/issues/328)). |
|
strip_accents (`bool`, *optional*): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for `lowercase` (as in the original BERT). |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, |
|
vocab_file, |
|
do_lower_case=True, |
|
do_basic_tokenize=True, |
|
never_split=None, |
|
pad_token="<pad>", |
|
eos_token="</s>", |
|
unk_token="<unk>", |
|
mask_token="<mask_2>", |
|
mask_token_sent="<mask_1>", |
|
additional_special_tokens=None, |
|
sep_token="[SEP]", |
|
cls_token="[CLS]", |
|
tokenize_chinese_chars=True, |
|
strip_accents=None, |
|
offset=100, |
|
pre_tokenizer=lambda x: jieba.cut(x, HMM=False), |
|
**kwargs): |
|
self.offset = offset |
|
|
|
if additional_special_tokens is not None: |
|
if not isinstance(additional_special_tokens, list): |
|
raise TypeError( |
|
f"additional_special_tokens should be of type {type(list)}, \ |
|
but is {type(additional_special_tokens)}" |
|
) |
|
|
|
additional_special_tokens_extended = ( |
|
([mask_token_sent] + additional_special_tokens) |
|
if mask_token_sent not in additional_special_tokens |
|
and mask_token_sent is not None else additional_special_tokens) |
|
|
|
|
|
additional_special_tokens_extended += [ |
|
f"<unk_{i}>" for i in range( |
|
len(additional_special_tokens_extended), self.offset - 1) |
|
] |
|
|
|
if len(set(additional_special_tokens_extended)) != len( |
|
additional_special_tokens_extended): |
|
raise ValueError( |
|
f"Please make sure that the provided additional_special_tokens \ |
|
do not contain an incorrectly shifted list of <unk_x> tokens. \ |
|
Found {additional_special_tokens_extended}." |
|
) |
|
additional_special_tokens = additional_special_tokens_extended |
|
else: |
|
additional_special_tokens = [ |
|
mask_token_sent |
|
] if mask_token_sent is not None else [] |
|
|
|
|
|
|
|
|
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
f"Can't find a vocabulary file at path '{vocab_file}'. \ |
|
To load the vocabulary from a Google pretrained " |
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" |
|
) |
|
|
|
super().__init__( |
|
do_lower_case=do_lower_case, |
|
do_basic_tokenize=do_basic_tokenize, |
|
never_split=never_split, |
|
unk_token=unk_token, |
|
sep_token=sep_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
mask_token=mask_token, |
|
eos_token=eos_token, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
additional_special_tokens=additional_special_tokens, |
|
strip_accents=strip_accents, |
|
**kwargs, |
|
) |
|
|
|
self.pre_tokenizer = pre_tokenizer |
|
self.mask_token_sent = mask_token_sent |
|
self.vocab = load_vocab(vocab_file) |
|
|
|
self.vocab[self.eos_token] = self.vocab.pop("[unused1]") |
|
|
|
self.vocab[self.pad_token] = self.vocab.pop("[PAD]") |
|
self.vocab[self.unk_token] = self.vocab.pop("[UNK]") |
|
|
|
if self.mask_token_sent is not None: |
|
self.vocab[self.mask_token] = self.vocab.pop("[unused3]") |
|
self.vocab[self.mask_token_sent] = self.vocab.pop("[unused2]") |
|
|
|
self.ids_to_tokens = collections.OrderedDict([ |
|
(ids, tok) for tok, ids in self.vocab.items() |
|
]) |
|
self.do_basic_tokenize = do_basic_tokenize |
|
if do_basic_tokenize: |
|
self.basic_tokenizer = BasicTokenizer( |
|
do_lower_case=do_lower_case, |
|
never_split=never_split, |
|
tokenize_chinese_chars=tokenize_chinese_chars, |
|
strip_accents=strip_accents, |
|
) |
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, |
|
unk_token=self.unk_token) |
|
|
|
@property |
|
def do_lower_case(self): |
|
return self.basic_tokenizer.do_lower_case |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.vocab) |
|
|
|
def get_vocab(self): |
|
return dict(self.vocab, **self.added_tokens_encoder) |
|
|
|
def _tokenize(self, text): |
|
split_tokens = [] |
|
|
|
for text in self.pre_tokenizer(text): |
|
if text in self.vocab: |
|
split_tokens.append(text) |
|
else: |
|
if self.do_basic_tokenize: |
|
for token in self.basic_tokenizer.tokenize( |
|
text, never_split=self.all_special_tokens): |
|
|
|
|
|
if token in self.basic_tokenizer.never_split: |
|
split_tokens.append(token) |
|
else: |
|
split_tokens += self.wordpiece_tokenizer.tokenize( |
|
token) |
|
else: |
|
split_tokens = self.wordpiece_tokenizer.tokenize(text) |
|
return split_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.vocab.get(token, self.vocab.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.ids_to_tokens.get(index, self.unk_token) |
|
|
|
@staticmethod |
|
def _cjk_punctuation(): |
|
return u'\uff02\uff03\uff04\uff05\uff06\uff07\uff08\uff09\uff0a\uff0b\uff0c\uff0d\uff0f\uff1a\uff1b\uff1c\uff1d\ |
|
\uff1e\uff20\uff3b\uff3c\uff3d\uff3e\uff3f\uff40\uff5b\uff5c\uff5d\uff5e\uff5f\uff60\uff62\ |
|
\uff63\uff64\u3000\u3001\u3003\u3008\u3009\u300a\u300b\u300c\u300d\u300e\u300f\u3010\u3011\u3014\ |
|
\u3015\u3016\u3017\u3018\u3019\u301a\u301b\u301c\u301d\u301e\u301f\u3030\u303e\u303f\u2013\u2014\ |
|
\u2018\u2019\u201b\u201c\u201d\u201e\u201f\u2026\u2027\ufe4f\ufe51\ufe54\u00b7\uff01\uff1f\uff61\u3002' |
|
|
|
def convert_ids_to_tokens( |
|
self, |
|
ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False) -> Union[str, List[str]]: |
|
""" |
|
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and |
|
added tokens. |
|
Args: |
|
ids (`int` or `List[int]`): |
|
The token id (or token ids) to convert to tokens. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
Returns: |
|
`str` or `List[str]`: The decoded token(s). |
|
""" |
|
if isinstance(ids, int): |
|
if ids in self.added_tokens_decoder: |
|
return self.added_tokens_decoder[ids] |
|
else: |
|
return self._convert_id_to_token(ids) |
|
tokens = [] |
|
for index in ids: |
|
index = int(index) |
|
if skip_special_tokens and index in self.all_special_ids and index != 2: |
|
continue |
|
if index in self.added_tokens_decoder: |
|
tokens.append(self.added_tokens_decoder[index]) |
|
else: |
|
tokens.append(self._convert_id_to_token(index)) |
|
return tokens |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
|
|
|
|
|
|
|
|
text = '' |
|
for i, token in enumerate(tokens): |
|
if token[:2] == '##': |
|
text += token[2:] |
|
elif len(token) == 1 and _is_chinese_char(ord(token)): |
|
text += token |
|
elif len(token) == 1 and _is_punctuation(token): |
|
text += token |
|
text += ' ' |
|
elif i > 0 and _is_chinese_char(ord(text[-1])): |
|
text += token |
|
elif tokens == "</s>": |
|
continue |
|
else: |
|
text += ' ' |
|
text += token |
|
|
|
text = re.sub(' +', ' ', text) |
|
text = re.sub('\' (re|m|s|t|ve|d|ll) ', '\'\\1 ', text) |
|
punctuation = re.sub(' +', '', self._cjk_punctuation()).strip() + '+-/={(<[' |
|
punctuation_regex = '|'.join([re.escape(p) for p in punctuation]) |
|
punctuation_regex = '(%s) ' % punctuation_regex |
|
text = re.sub(punctuation_regex, '\\1', text) |
|
text = re.sub(r'(\d\.) (\d)', '\\1\\2', text) |
|
|
|
return text.strip() |
|
|
|
|
|
def build_inputs_with_special_tokens( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating |
|
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence: |
|
- single sequence: `X </s>` |
|
- pair of sequences: `A B </s>` (not intended use) |
|
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a |
|
separator. |
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if token_ids_1 is None: |
|
return token_ids_0 + [self.eos_token_id] |
|
return token_ids_0 + token_ids_1 + [self.eos_token_id] |
|
|
|
def _special_token_mask(self, seq): |
|
all_special_ids = set( |
|
self.all_special_ids) |
|
|
|
|
|
return [1 if x in all_special_ids else 0 for x in seq] |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False) -> List[int]: |
|
""" |
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` method. |
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
|
|
if already_has_special_tokens: |
|
return self._special_token_mask(token_ids_0) |
|
elif token_ids_1 is None: |
|
return self._special_token_mask(token_ids_0) + [self.eos_token_id] |
|
else: |
|
return self._special_token_mask(token_ids_0 + |
|
token_ids_1) + [self.eos_token_id] |
|
|
|
def num_special_tokens_to_add(self, pair=False): |
|
"""Just EOS""" |
|
return 1 |
|
|
|
def save_vocabulary(self, |
|
save_directory: str, |
|
filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
index = 0 |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") + |
|
VOCAB_FILES_NAMES["vocab_file"]) |
|
else: |
|
vocab_file = (filename_prefix + |
|
"-" if filename_prefix else "") + save_directory |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted(self.vocab.items(), |
|
key=lambda kv: kv[1]): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!") |
|
index = token_index |
|
writer.write(token + "\n") |
|
index += 1 |
|
return (vocab_file, ) |
|
|
|
|
|
class BasicTokenizer(object): |
|
""" |
|
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). |
|
Args: |
|
do_lower_case (`bool`, *optional*, defaults to `True`): |
|
Whether or not to lowercase the input when tokenizing. |
|
never_split (`Iterable`, *optional*): |
|
Collection of tokens which will never be split during tokenization. Only has an effect when |
|
`do_basic_tokenize=True` |
|
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): |
|
Whether or not to tokenize Chinese characters. |
|
This should likely be deactivated for Japanese (see this |
|
[issue](https://github.com/huggingface/transformers/issues/328)). |
|
strip_accents: (`bool`, *optional*): |
|
Whether or not to strip all accents. If this option is not specified, then it will be determined by the |
|
value for `lowercase` (as in the original BERT). |
|
""" |
|
|
|
def __init__(self, |
|
do_lower_case=True, |
|
never_split=None, |
|
tokenize_chinese_chars=True, |
|
strip_accents=None): |
|
if never_split is None: |
|
never_split = [] |
|
self.do_lower_case = do_lower_case |
|
self.never_split = set(never_split) |
|
self.tokenize_chinese_chars = tokenize_chinese_chars |
|
self.strip_accents = strip_accents |
|
|
|
def tokenize(self, text, never_split=None): |
|
""" |
|
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see |
|
WordPieceTokenizer. |
|
Args: |
|
never_split (`List[str]`, *optional*) |
|
Kept for backward compatibility purposes. Now implemented directly at the base class level (see |
|
[`PreTrainedTokenizer.tokenize`]) List of token not to split. |
|
""" |
|
|
|
never_split = self.never_split.union( |
|
set(never_split)) if never_split else self.never_split |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.tokenize_chinese_chars: |
|
text = self._tokenize_chinese_chars(text) |
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if token not in never_split: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
if self.strip_accents is not False: |
|
token = self._run_strip_accents(token) |
|
elif self.strip_accents: |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token, never_split)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text, never_split=None): |
|
"""Splits punctuation on a piece of text.""" |
|
if never_split is not None and text in never_split: |
|
return [text] |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) |
|
or (cp >= 0x3400 and cp <= 0x4DBF) |
|
or (cp >= 0x20000 and cp <= 0x2A6DF) |
|
or (cp >= 0x2A700 and cp <= 0x2B73F) |
|
or (cp >= 0x2B740 and cp <= 0x2B81F) |
|
or (cp >= 0x2B820 and cp <= 0x2CEAF) |
|
or (cp >= 0xF900 and cp <= 0xFAFF) |
|
or (cp >= 0x2F800 and cp <= 0x2FA1F)): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xFFFD or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenization.""" |
|
|
|
def __init__(self, vocab, unk_token, max_input_chars_per_word=100): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
""" |
|
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform |
|
tokenization using the given vocabulary. |
|
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. |
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through *BasicTokenizer*. |
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|