IProject-10 commited on
Commit
950e1b5
1 Parent(s): 39387db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -16
README.md CHANGED
@@ -8,30 +8,73 @@ datasets:
8
  model-index:
9
  - name: deberta-v3-base-finetuned-squad2
10
  results: []
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # deberta-v3-base-finetuned-squad2
17
-
18
- This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the squad_v2 dataset.
19
- It achieves the following results on the evaluation set:
20
- - Loss: 0.8493
21
-
22
  ## Model description
23
 
24
- More information needed
25
-
26
- ## Intended uses & limitations
 
 
27
 
28
- More information needed
 
 
 
 
 
29
 
30
- ## Training and evaluation data
31
-
32
- More information needed
33
 
34
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ### Training hyperparameters
37
 
@@ -52,10 +95,13 @@ The following hyperparameters were used during training:
52
  | 0.5104 | 2.0 | 16434 | 0.7321 |
53
  | 0.3547 | 3.0 | 24651 | 0.8493 |
54
 
55
-
 
 
 
56
  ### Framework versions
57
 
58
  - Transformers 4.31.0
59
  - Pytorch 2.0.1+cu118
60
  - Datasets 2.14.3
61
- - Tokenizers 0.13.3
 
8
  model-index:
9
  - name: deberta-v3-base-finetuned-squad2
10
  results: []
11
+ language:
12
+ - en
13
+ metrics:
14
+ - exact_match
15
+ - f1
16
+ pipeline_tag: question-answering
17
  ---
18
 
19
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
  should probably proofread and complete it, then remove this comment. -->
21
 
 
 
 
 
 
 
22
  ## Model description
23
 
24
+ DeBERTa-v3-base fine-tuned on SQuAD 2.0 : Encoder-based Transformer Language model.
25
+ The DeBERTa V3 base model comes with 12 layers and a hidden size of 768.
26
+ It has only 86M backbone parameters with a vocabulary containing 128K tokens which introduces 98M parameters in the Embedding layer.
27
+ This model was trained using the 160GB data as DeBERTa V2.
28
+ Suitable for Question-Answering tasks, predicts answer spans within the context provided.<br>
29
 
30
+ **Language model:** microsoft/deberta-v3-base
31
+ **Language:** English
32
+ **Downstream-task:** Question-Answering
33
+ **Training data:** Train-set SQuAD 2.0
34
+ **Evaluation data:** Evaluation-set SQuAD 2.0
35
+ **Hardware Accelerator used**: GPU Tesla T4
36
 
37
+ ## Intended uses & limitations
 
 
38
 
39
+ For Question-Answering -
40
+
41
+ ```python
42
+ !pip install transformers
43
+ from transformers import pipeline
44
+ model_checkpoint = "IProject-10/deberta-v3-base-finetuned-squad2"
45
+ question_answerer = pipeline("question-answering", model=model_checkpoint)
46
+
47
+ context = """
48
+ 🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration
49
+ between them. It's straightforward to train your models with one before loading them for inference with the other.
50
+ """
51
+
52
+ question = "Which deep learning libraries back 🤗 Transformers?"
53
+ question_answerer(question=question, context=context)
54
+ ```
55
+
56
+ ## Results
57
+
58
+ Evaluation on SQuAD 2.0 validation dataset:
59
+
60
+ ```
61
+ exact: 84.56161037648447,
62
+ f1: 87.81110592215731,
63
+ total: 11873,
64
+ HasAns_exact: 81.62955465587045,
65
+ HasAns_f1: 88.13786447600818,
66
+ HasAns_total: 5928,
67
+ NoAns_exact: 87.48528174936922,
68
+ NoAns_f1: 87.48528174936922,
69
+ NoAns_total: 5945,
70
+ best_exact: 84.56161037648447,
71
+ best_exact_thresh: 0.9994288682937622,
72
+ best_f1: 87.81110592215778,
73
+ best_f1_thresh: 0.9994288682937622,
74
+ total_time_in_seconds: 336.43560706100106,
75
+ samples_per_second: 35.29055709566211,
76
+ latency_in_seconds: 0.028336191953255374
77
+ ```
78
 
79
  ### Training hyperparameters
80
 
 
95
  | 0.5104 | 2.0 | 16434 | 0.7321 |
96
  | 0.3547 | 3.0 | 24651 | 0.8493 |
97
 
98
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the squad_v2 dataset.
99
+ It achieves the following results on the evaluation set:
100
+ - Loss: 0.8493
101
+
102
  ### Framework versions
103
 
104
  - Transformers 4.31.0
105
  - Pytorch 2.0.1+cu118
106
  - Datasets 2.14.3
107
+ - Tokenizers 0.13.3