IProject-10
commited on
Commit
•
ce4b09b
1
Parent(s):
a5b077e
Update README.md
Browse files
README.md
CHANGED
@@ -10,30 +10,109 @@ model-index:
|
|
10 |
results: []
|
11 |
language:
|
12 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
should probably proofread and complete it, then remove this comment. -->
|
17 |
|
18 |
-
# xlm-roberta-base-finetuned-squad2
|
19 |
-
|
20 |
-
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad_v2 dataset.
|
21 |
-
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.9802
|
23 |
-
|
24 |
## Model description
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
## Intended uses & limitations
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
##
|
33 |
-
|
34 |
-
More information needed
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
### Training hyperparameters
|
39 |
|
@@ -54,7 +133,10 @@ The following hyperparameters were used during training:
|
|
54 |
| 0.8013 | 2.0 | 16666 | 0.8910 |
|
55 |
| 0.5918 | 3.0 | 24999 | 0.9802 |
|
56 |
|
57 |
-
|
|
|
|
|
|
|
58 |
### Framework versions
|
59 |
|
60 |
- Transformers 4.31.0
|
|
|
10 |
results: []
|
11 |
language:
|
12 |
- en
|
13 |
+
- ar
|
14 |
+
- de
|
15 |
+
- el
|
16 |
+
- es
|
17 |
+
- hi
|
18 |
+
- ro
|
19 |
+
- ru
|
20 |
+
- th
|
21 |
+
- tr
|
22 |
+
- vi
|
23 |
+
- zh
|
24 |
+
metrics:
|
25 |
+
- exact_match
|
26 |
+
- f1
|
27 |
+
pipeline_tag: question-answering
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
should probably proofread and complete it, then remove this comment. -->
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
## Model description
|
34 |
|
35 |
+
XLM-RoBERTa is a multilingual version of RoBERTa developed by Facebook AI. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages.
|
36 |
+
It is an extension of RoBERTa, which is itself a variant of the BERT model. XLM-RoBERTa is designed to handle multiple languages and demonstrate strong performance across a wide range of tasks, making it highly useful for multilingual natural language processing (NLP) applications.
|
|
|
37 |
|
38 |
+
**Language model:** xlm-roberta-base
|
39 |
+
**Language:** English
|
40 |
+
**Downstream-task:** Question-Answering
|
41 |
+
**Training data:** Train-set SQuAD 2.0
|
42 |
+
**Evaluation data:** Evaluation-set SQuAD 2.0
|
43 |
+
**Hardware Accelerator used**: GPU Tesla T4
|
44 |
|
45 |
+
## Intended uses & limitations
|
|
|
|
|
46 |
|
47 |
+
For Question-Answering in English-
|
48 |
+
|
49 |
+
```python
|
50 |
+
!pip install transformers
|
51 |
+
from transformers import pipeline
|
52 |
+
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
|
53 |
+
question_answerer = pipeline("question-answering", model=model_checkpoint)
|
54 |
+
|
55 |
+
context = """
|
56 |
+
The Statue of Unity is the world's tallest statue, with a height of 182 metres (597 feet), located near Kevadia in the state of Gujarat, India.
|
57 |
+
"""
|
58 |
+
|
59 |
+
question = "What is the height of statue of Unity?"
|
60 |
+
question_answerer(question=question, context=context)
|
61 |
+
```
|
62 |
+
For Question-Answering in Hindi-
|
63 |
+
|
64 |
+
```python
|
65 |
+
!pip install transformers
|
66 |
+
from transformers import pipeline
|
67 |
+
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
|
68 |
+
question_answerer = pipeline("question-answering", model=model_checkpoint)
|
69 |
+
|
70 |
+
context = """
|
71 |
+
स्टैच्यू ऑफ यूनिटी दुनिया की सबसे ऊंची प्रतिमा है, जिसकी ऊंचाई 182 मीटर (597 फीट) है, जो भारत के गुजरात राज्य में केवडिया के पास स्थित है।
|
72 |
+
"""
|
73 |
+
|
74 |
+
question = "स्टैच्यू ऑफ यूनिटी की ऊंचाई कितनी है?"
|
75 |
+
question_answerer(question=question, context=context)
|
76 |
+
```
|
77 |
+
|
78 |
+
For Question-Answering in Spanish-
|
79 |
+
|
80 |
+
```python
|
81 |
+
!pip install transformers
|
82 |
+
from transformers import pipeline
|
83 |
+
model_checkpoint = "IProject-10/bert-base-uncased-finetuned-squad2"
|
84 |
+
question_answerer = pipeline("question-answering", model=model_checkpoint)
|
85 |
+
|
86 |
+
context = """
|
87 |
+
La Estatua de la Unidad es la estatua más alta del mundo, con una altura de 182 metros (597 pies), ubicada cerca de Kevadia en el estado de Gujarat, India.
|
88 |
+
"""
|
89 |
+
|
90 |
+
question = "¿Cuál es la altura de la estatua de la Unidad?"
|
91 |
+
question_answerer(question=question, context=context)
|
92 |
+
```
|
93 |
+
|
94 |
+
## Results
|
95 |
+
|
96 |
+
Evaluation on SQuAD 2.0 validation dataset:
|
97 |
+
|
98 |
+
```
|
99 |
+
exact: 75.51587635812348,
|
100 |
+
f1: 78.7328391907263,
|
101 |
+
total: 11873,
|
102 |
+
HasAns_exact: 73.00944669365722,
|
103 |
+
HasAns_f1: 79.45259779208723,
|
104 |
+
HasAns_total: 5928,
|
105 |
+
NoAns_exact: 78.01513877207738,
|
106 |
+
NoAns_f1: 78.01513877207738,
|
107 |
+
NoAns_total: 5945,
|
108 |
+
best_exact: 75.51587635812348,
|
109 |
+
best_exact_thresh: 0.999241054058075,
|
110 |
+
best_f1: 78.73283919072665,
|
111 |
+
best_f1_thresh: 0.999241054058075,
|
112 |
+
total_time_in_seconds: 218.97641910400125,
|
113 |
+
samples_per_second: 54.220450076686134,
|
114 |
+
latency_in_seconds: 0.018443225730986376
|
115 |
+
```
|
116 |
|
117 |
### Training hyperparameters
|
118 |
|
|
|
133 |
| 0.8013 | 2.0 | 16666 | 0.8910 |
|
134 |
| 0.5918 | 3.0 | 24999 | 0.9802 |
|
135 |
|
136 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the squad_v2 dataset.
|
137 |
+
It achieves the following results on the evaluation set:
|
138 |
+
- Loss: 0.9802
|
139 |
+
|
140 |
### Framework versions
|
141 |
|
142 |
- Transformers 4.31.0
|