{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4627360240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674010426159928435, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADzhcr+fGao/lmF7v/DKgL/H/na+LWK6Pm3uer7YhfE/ZJ4av5KFET6NA52/ykKIvL9ssD/TZay9P74+vu9kkD27dERAzaNav6+9OL9nSuk+zXypPwG04b6jEJ2/6IGNPpXMR78Chic/jF96PvoWGj+CfUe/iL26vz/5Kj+on5G/xbuhvs+lDb5Dtdi+ZhrePR4QvT/ERsM/ZuG4vdt0K7+ooY2/zEgqPqLZnj7aqg7AOD2gP1vd4z/17+Y+CxOtvrrOXT4xdUk//K+KvufXxD40AaQ/OprDv4xfej76Fho/2Kcnv9LhOj8fT5y9Tm7PvQKf7jypGfy+UYeovhcO+z8yC3m/QSjrvrL7Z79wGqe/wwUqPYQ8Qr1ZjcS+ry5hvZk04T/Ln1I80z7Uv/VJMcDytHG/PVCNvUW9er9OhPC9lcxHvwKGJz+MX3o++hYaP5B/iz7Msg6/eZ4lP+imE7860ri+NspnP+v/sb7dhje/IHtVP5XbRsBiy6o/P3cPPmU9gD+agt6/qmEVPzpCsL8f1kk/p2EswD64Qz5QG5m/etpMv+igo7+Kg/M+r64UvzQBpD8Chic/jF96PvoWGj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADhIbG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoG/6PQAAAABLYP2/AAAAABG8CT0AAAAA8z0BQAAAAACkLvK9AAAAANNH7T8AAAAAwtrCPAAAAADMs/O/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVEmQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCJkHL0AAAAA11jlvwAAAACYDFQ8AAAAACCv8z8AAAAAIPh+PQAAAAA9tfs/AAAAADSGm70AAAAAT2P9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJdjP7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDq5vm9AAAAAOl3/L8AAAAAx8M8vQAAAAAtRfE/AAAAAIqdrb0AAAAACcT8PwAAAAADuOM9AAAAAJqvAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnqLO1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkFsLPgAAAAB++e+/AAAAAOcIx7wAAAAAdO7sPwAAAADRmtM9AAAAAAva7z8AAAAATdHSOgAAAAC4c9m/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiBV8KG+K2MAWyUTegDjAF0lEdApq6SRhc7hnV9lChoBkdAl4MqGQCCBmgHTegDaAhHQKa1245Lh751fZQoaAZHQJbAcVN5+phoB03oA2gIR0CmteSb6P8ydX2UKGgGR0CWAiVS4vvjaAdN6ANoCEdAprZLnxJ/X3V9lChoBkdAmMf+SKWLP2gHTegDaAhHQKa54A4GUwB1fZQoaAZHQJQfyAy2x6hoB03oA2gIR0CmwZCGvfTDdX2UKGgGR0CSpUU1AJLNaAdN6ANoCEdApsGYq3EycnV9lChoBkdAlUx00Nz8xmgHTegDaAhHQKbCAwFkhA51fZQoaAZHQJO8fN8ma6VoB03oA2gIR0CmxXoDPnjidX2UKGgGR0CKPswiaAnVaAdN6ANoCEdAps0XavicXnV9lChoBkdAi5Oeg13t8mgHTegDaAhHQKbNH6w+t8x1fZQoaAZHQJFgPYGt6oloB03oA2gIR0CmzYK9XcQAdX2UKGgGR0CMPOkfs/puaAdN6ANoCEdAptD1C1JDmnV9lChoBkdAiH1xTbWVeWgHTegDaAhHQKbYuOMl1KZ1fZQoaAZHQIhpqPXCj1xoB03oA2gIR0Cm2MEcbR4RdX2UKGgGR0CN0A4x1xKhaAdN6ANoCEdAptkoAMlTnHV9lChoBkdAiVZyOq//N2gHTegDaAhHQKbcrSpiqhl1fZQoaAZHQIxfFy1eBxxoB03oA2gIR0Cm5G0ALiMpdX2UKGgGR0CNSodNFjNIaAdN6ANoCEdApuR2FFlTWHV9lChoBkdAhyCcU21lXmgHTegDaAhHQKbk3vG6wt91fZQoaAZHQIkRp4Uvf0poB03oA2gIR0Cm6IGbkOqedX2UKGgGR0CJRKYP5HmSaAdN6ANoCEdApvBkXP7emHV9lChoBkdAhGMSauwHJWgHTegDaAhHQKbwbIqbz9V1fZQoaAZHQITSqFEiMYNoB03oA2gIR0Cm8M3K0UoKdX2UKGgGR0CKN5AvcrRTaAdN6ANoCEdApvReOsDGLnV9lChoBkdAhVdNnwob42gHTegDaAhHQKb8dVHWjGl1fZQoaAZHQIbVkcOskptoB03oA2gIR0Cm/H6+FlCkdX2UKGgGR0CIEDWEK3NLaAdN6ANoCEdApvzp6rvLHXV9lChoBkdAh1ynK4hEB2gHTegDaAhHQKcAnND+irV1fZQoaAZHQIGxnbCaZx9oB03oA2gIR0CnCGeiBXjmdX2UKGgGR0CCkfDlYEGJaAdN6ANoCEdApwhwvSMLnnV9lChoBkdAhV9YKIBRymgHTegDaAhHQKcI1lU6xPh1fZQoaAZHQIcGJYPoV21oB03oA2gIR0CnDG3iBGx2dX2UKGgGR0CCfUeJ53TvaAdN6ANoCEdApxQprN4Z/HV9lChoBkdAg2BNmDlHSWgHTegDaAhHQKcUNX9zfaZ1fZQoaAZHQIGyFGd7OVxoB03oA2gIR0CnFNUrbxmTdX2UKGgGR0B9VIpPRAryaAdN6ANoCEdApxpr/Khcq3V9lChoBkdAf2UZv1lGw2gHTegDaAhHQKcjwnssxwh1fZQoaAZHQIHp8sWfseJoB03oA2gIR0CnI8umixmkdX2UKGgGR0B4DRVIZqEfaAdN6ANoCEdApyQ3LPldT3V9lChoBkdAfGhj3225QWgHTegDaAhHQKcn+xVQyh11fZQoaAZHQIAKM0+C9RJoB03oA2gIR0CnM4dsi0OWdX2UKGgGR0B1Z8Bo24usaAdN6ANoCEdApzOPpljEvXV9lChoBkdAeDs6BAfMfWgHTegDaAhHQKcz9WYnfEZ1fZQoaAZHQHnGofW+XZ5oB03oA2gIR0CnN3sXzlLfdX2UKGgGR0CCLLVtGd7OaAdN6ANoCEdApz9M+xGDtnV9lChoBkdAeY5vttygf2gHTegDaAhHQKc/VeIEbHZ1fZQoaAZHQIHAVCZ4Oc5oB03oA2gIR0CnP8DnFHawdX2UKGgGR0CA2knrIHTraAdN6ANoCEdAp0NzxqfvnnV9lChoBkdAeiaa9bor4GgHTegDaAhHQKdLLS0BwMp1fZQoaAZHQHB62q94/u9oB03oA2gIR0CnSzWWQfZFdX2UKGgGR0B/E67QLNOeaAdN6ANoCEdAp0udiMHbAXV9lChoBkdAdKaiay8jA2gHTegDaAhHQKdPHN2TxG51fZQoaAZHQHrzobGWD6FoB03oA2gIR0CnVv31SOzZdX2UKGgGR0B8o0awUxmDaAdN6ANoCEdAp1cGkJrtV3V9lChoBkdAfeHGNrCWNWgHTegDaAhHQKdXd5FgDzR1fZQoaAZHQHgqJFCswL5oB03oA2gIR0CnWxp4bCJodX2UKGgGR0CCEhWuHN5daAdN6ANoCEdAp2KtBfKISHV9lChoBkdAfnRX5nDiwWgHTegDaAhHQKditasZHd51fZQoaAZHQID01w5vLoxoB03oA2gIR0CnYxghje9BdX2UKGgGR0B7/h1vES/TaAdN6ANoCEdAp2aPIGQjlnV9lChoBkdAhQ/nFHavimgHTegDaAhHQKdt+Mx46fd1fZQoaAZHQIVrrZ6D5CZoB03oA2gIR0CnbgEMTewcdX2UKGgGR0CFyE40/GEPaAdN6ANoCEdAp25l1dPcjHV9lChoBkdAgplIvJzT4WgHTegDaAhHQKdx4wLVnVZ1fZQoaAZHQINfgD3dsSFoB03oA2gIR0CneXvmYBvKdX2UKGgGR0B8cSryUcGUaAdN6ANoCEdAp3mD/Khcq3V9lChoBkdAfYN1SOzY3GgHTegDaAhHQKd55yuIRAd1fZQoaAZHQIBraGN70FtoB03oA2gIR0CnfVg2Q4jsdX2UKGgGR0BzPDv/io87aAdN6ANoCEdAp4TUtmL9/HV9lChoBkdAfbHoePq9oWgHTegDaAhHQKeE3QF9roJ1fZQoaAZHQIUmwID5j6NoB03oA2gIR0CnhT9EkSmJdX2UKGgGR0B6NG4d6sySaAdN6ANoCEdAp4jP2TPjXHV9lChoBkdAgy0eQuEmIGgHTegDaAhHQKeQYPOIInl1fZQoaAZHQIFDAhllK9RoB03oA2gIR0CnkGkEC/47dX2UKGgGR0B8ifQSi/O/aAdN6ANoCEdAp5DPikwevXV9lChoBkdAflWiuMdcS2gHTegDaAhHQKeUWRyOrAB1fZQoaAZHQIJJT7O3UhFoB03oA2gIR0Cnm/9eQdS3dX2UKGgGR0CDTbDfm9xqaAdN6ANoCEdAp5wHpfQa73V9lChoBkdAgI7ae5Fw1mgHTegDaAhHQKeca4d6syV1fZQoaAZHQISsJj8UEgZoB03oA2gIR0CnoBOeSSvDdX2UKGgGR0CC52mdAgPmaAdN6ANoCEdAp6gVvMr3CnV9lChoBkdAh8xF1KXfImgHTegDaAhHQKeoHqcEvCd1fZQoaAZHQImJ5Xp4bCJoB03oA2gIR0CnqIJZGKAKdX2UKGgGR0CGtG0BwMpgaAdN6ANoCEdAp6wszCUHIXV9lChoBkdAgsXD/2kBS2gHTegDaAhHQKez9/zasZJ1fZQoaAZHQIJRmCK77KtoB03oA2gIR0CntACwr1/UdX2UKGgGR0CIQE25QP7OaAdN6ANoCEdAp7RlvZRKpXV9lChoBkdAhVPEW69TP2gHTegDaAhHQKe4DeN1hb51fZQoaAZHQISA0i+tbLVoB03oA2gIR0Cnv+xrSE13dX2UKGgGR0CGPQw3YL9daAdN6ANoCEdAp7/0jVx0dXV9lChoBkdAiOnoDgZTAGgHTegDaAhHQKfAWYWLxZx1fZQoaAZHQIbTiLhrFfloB03oA2gIR0Cnw/cPFvQ4dX2UKGgGR0CH3swwj+rEaAdN6ANoCEdAp8w/z19ORHV9lChoBkdAi7L5kkKNQ2gHTegDaAhHQKfMSPaL4vh1fZQoaAZHQIjLpU70WdpoB03oA2gIR0CnzLTqB3A3dX2UKGgGR0CIeqJqqOtGaAdN6ANoCEdAp9C6mQ8wH3V9lChoBkdAi+YfX5FgD2gHTegDaAhHQKfY8w9JSR91fZQoaAZHQIt8c1XNke9oB03oA2gIR0Cn2PwNTcZcdX2UKGgGR0CJCjCWNWELaAdN6ANoCEdAp9lsBnzxw3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}