Update README.md
Browse files
README.md
CHANGED
@@ -68,8 +68,10 @@ A model finetuned with the [NoticIA Dataset](https://huggingface.co/datasets/Ike
|
|
68 |
|
69 |
# Usage example:
|
70 |
```python
|
71 |
-
|
72 |
-
from
|
|
|
|
|
73 |
|
74 |
def prompt(
|
75 |
headline: str,
|
@@ -103,21 +105,37 @@ def prompt(
|
|
103 |
f"{body}\n"
|
104 |
)
|
105 |
|
|
|
|
|
106 |
|
|
|
107 |
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
model_input = prompt(headline=example["web_headline"],body=example["web_text"])
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
summary =
|
119 |
|
120 |
-
print(summary)
|
121 |
```
|
122 |
|
123 |
# Evaluation Results
|
|
|
68 |
|
69 |
# Usage example:
|
70 |
```python
|
71 |
+
import torch # pip install torch
|
72 |
+
from datasets import load_dataset # pip install datasets
|
73 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig # pip install transformers
|
74 |
+
|
75 |
|
76 |
def prompt(
|
77 |
headline: str,
|
|
|
105 |
f"{body}\n"
|
106 |
)
|
107 |
|
108 |
+
dataset = load_dataset("Iker/NoticIA")
|
109 |
+
example = dataset["test"][0]
|
110 |
|
111 |
+
prompt = prompt(headline=example["web_headline"], body=example["web_text"])
|
112 |
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained("Iker/ClickbaitFighter-2B")
|
114 |
+
model = AutoModelForCausalLM.from_pretrained(
|
115 |
+
"Iker/ClickbaitFighter-2B", torch_dtype=torch.bfloat16, device_map="auto"
|
116 |
+
)
|
117 |
|
118 |
+
formatted_prompt = tokenizer.apply_chat_template(
|
119 |
+
[{"role": "user", "content": prompt}],
|
120 |
+
tokenize=False,
|
121 |
+
add_generation_prompt=True,
|
122 |
+
)
|
123 |
|
124 |
+
model_inputs = tokenizer(
|
125 |
+
[formatted_prompt], return_tensors="pt", add_special_tokens=False
|
126 |
+
)
|
|
|
|
|
127 |
|
128 |
+
model_output = model.generate(**model_inputs.to(model.device), generation_config=GenerationConfig(
|
129 |
+
max_new_tokens=32,
|
130 |
+
min_new_tokens=1,
|
131 |
+
do_sample=False,
|
132 |
+
num_beams=1,
|
133 |
+
use_cache=True
|
134 |
+
))
|
135 |
|
136 |
+
summary = tokenizer.batch_decode(model_output,skip_special_tokens=True)[0]
|
137 |
|
138 |
+
print(summary.strip().split("\n")[-1]) # Get only the summary, without the prompt.
|
139 |
```
|
140 |
|
141 |
# Evaluation Results
|