#!/usr/bin/env bash accelerate launch run_distillation.py \ --model_name_or_path "./distil-large-v3-init" \ --teacher_model_name_or_path "openai/whisper-large-v3" \ --train_dataset_name "../common_voice_13_0_bg_pseudo_labelled+../common_voice_13_0_bg_pseudo_labelled" \ --train_dataset_config_name "bg+bg" \ --train_split_name "train+validation" \ --text_column_name "sentence+sentence" \ --train_dataset_samples "10+5" \ --eval_dataset_name "../common_voice_13_0_bg_pseudo_labelled" \ --eval_dataset_config_name "bg" \ --eval_split_name "test" \ --eval_text_column_name "sentence" \ --eval_steps 1000 \ --save_steps 1000 \ --warmup_steps 50 \ --learning_rate 0.0001 \ --lr_scheduler_type "constant_with_warmup" \ --logging_steps 25 \ --save_total_limit 1 \ --max_steps 5000 \ --wer_threshold 10 \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --dataloader_num_workers 28 \ --preprocessing_num_workers 28 \ --ddp_timeout 7200 \ --dtype "bfloat16" \ --output_dir "./" \ --do_train \ --gradient_checkpointing \ --overwrite_output_dir \ --predict_with_generate \ --freeze_encoder \ --streaming False \ --push_to_hub