--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-uncased_08112024T144127 results: [] --- # bert-base-uncased_08112024T144127 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4242 - F1: 0.8849 - Learning Rate: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Rate | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | No log | 0.9942 | 86 | 1.7911 | 0.1661 | 0.0000 | | No log | 2.0 | 173 | 1.6895 | 0.2558 | 0.0000 | | No log | 2.9942 | 259 | 1.5467 | 0.4336 | 0.0000 | | No log | 4.0 | 346 | 1.3716 | 0.5012 | 0.0000 | | No log | 4.9942 | 432 | 1.1818 | 0.5459 | 0.0000 | | 1.5117 | 6.0 | 519 | 1.0336 | 0.5938 | 0.0000 | | 1.5117 | 6.9942 | 605 | 0.9389 | 0.6309 | 1e-05 | | 1.5117 | 8.0 | 692 | 0.8480 | 0.6802 | 0.0000 | | 1.5117 | 8.9942 | 778 | 0.7481 | 0.7288 | 0.0000 | | 1.5117 | 10.0 | 865 | 0.6824 | 0.7561 | 0.0000 | | 1.5117 | 10.9942 | 951 | 0.6213 | 0.7867 | 0.0000 | | 0.7682 | 12.0 | 1038 | 0.5781 | 0.8039 | 0.0000 | | 0.7682 | 12.9942 | 1124 | 0.5184 | 0.8345 | 0.0000 | | 0.7682 | 14.0 | 1211 | 0.4854 | 0.8489 | 0.0000 | | 0.7682 | 14.9942 | 1297 | 0.4815 | 0.8559 | 0.0000 | | 0.7682 | 16.0 | 1384 | 0.4422 | 0.8704 | 0.0000 | | 0.7682 | 16.9942 | 1470 | 0.4422 | 0.8761 | 6e-06 | | 0.305 | 18.0 | 1557 | 0.4368 | 0.8791 | 0.0000 | | 0.305 | 18.9942 | 1643 | 0.4242 | 0.8849 | 0.0000 | | 0.305 | 20.0 | 1730 | 0.4483 | 0.8829 | 0.0000 | | 0.305 | 20.9942 | 1816 | 0.4539 | 0.8841 | 0.0000 | | 0.305 | 22.0 | 1903 | 0.4521 | 0.8862 | 0.0000 | | 0.305 | 22.9942 | 1989 | 0.4450 | 0.8896 | 0.0000 | | 0.1014 | 24.0 | 2076 | 0.4603 | 0.8874 | 0.0000 | | 0.1014 | 24.9942 | 2162 | 0.4750 | 0.8864 | 0.0000 | | 0.1014 | 26.0 | 2249 | 0.4711 | 0.8887 | 7e-07 | | 0.1014 | 26.9942 | 2335 | 0.4756 | 0.8879 | 4e-07 | | 0.1014 | 28.0 | 2422 | 0.4691 | 0.8883 | 2e-07 | | 0.0521 | 28.9942 | 2508 | 0.4694 | 0.8883 | 0.0 | | 0.0521 | 29.8266 | 2580 | 0.4699 | 0.8883 | 0.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.19.1