InferencetrainingAI
commited on
Commit
•
4f6d94e
1
Parent(s):
8f7c994
Upload FaceAuth.py
Browse filesFaceAuth utilizing the Insight-face Model
- FaceAuth.py +123 -0
FaceAuth.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
from insightface.app import FaceAnalysis
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
# prompt: compare face embediggs
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
class FaceRec:
|
14 |
+
def __init__(self):
|
15 |
+
self.foldername = '/home/emmanuel/Pictures/Webcam'
|
16 |
+
self.files = []
|
17 |
+
self.embeds = []
|
18 |
+
self.diff = []
|
19 |
+
self.ground_mathches = []
|
20 |
+
self.sampling = None
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def folder(self, attempt=True, folder='/home/emmanuel/Pictures/Webcam'):
|
25 |
+
if attempt:
|
26 |
+
for file in os.listdir(folder):
|
27 |
+
self.files.append(file)
|
28 |
+
|
29 |
+
self.image_pair = list(zip(self.files[0:len(self.files)//2], self.files[len(self.files)//2:]))
|
30 |
+
print(self.image_pair)
|
31 |
+
|
32 |
+
|
33 |
+
else:
|
34 |
+
self.foldername = '/home/emmanuel/Pictures/webcam'
|
35 |
+
self.files = []
|
36 |
+
self.folder(attempt=True, folder=self.foldername)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def embeddings(self, image):
|
42 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
43 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
44 |
+
image1 = cv2.imread(image)
|
45 |
+
faces = app.get(image1)
|
46 |
+
|
47 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
48 |
+
return(torch.Tensor(faceid_embeds))
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def face_embed(self, face, face1):
|
53 |
+
# Load the two images and get their face embeddings.
|
54 |
+
face_encodings = self.embeddings(face)
|
55 |
+
face_encodings1 = self.embeddings(face1)
|
56 |
+
return(torch.nn.functional.cosine_similarity(face_encodings, face_encodings1))
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def closeness(self):
|
61 |
+
self.embeds = []
|
62 |
+
for faces in self.image_pair:
|
63 |
+
self.embeds.append(self.face_embed(self.foldername+'/'+faces[0], self.foldername+'/'+faces[1]))
|
64 |
+
|
65 |
+
return(0)
|
66 |
+
|
67 |
+
|
68 |
+
def compare(self, attempt=True):
|
69 |
+
self.diff = []
|
70 |
+
for diffs in list(zip(self.embeds[0:len(self.embeds)//2], self.embeds[len(self.embeds)//2:])):
|
71 |
+
self.diff.append(torch.nn.functional.pairwise_distance(diffs[0], diffs[1]))
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def expectation(self):
|
77 |
+
mean, std = torch.mean(torch.Tensor(self.diff[0:])), torch.std(torch.Tensor(self.diff[0:]))
|
78 |
+
distribute = torch.distributions.Normal(mean, std)
|
79 |
+
self.sampling = distribute.sample(sample_shape=(10,))
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
def model(self):
|
84 |
+
self.closeness()
|
85 |
+
return(self.compare())
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
def verify(self):
|
90 |
+
self.folder()
|
91 |
+
self.model()
|
92 |
+
self.expectation()
|
93 |
+
self.folder(attempt=False)
|
94 |
+
self.model()
|
95 |
+
|
96 |
+
fails = 0
|
97 |
+
success = 0
|
98 |
+
max_itter = 10
|
99 |
+
while max_itter >= 0:
|
100 |
+
for samples in self.sampling:
|
101 |
+
if self.diff[0] <= samples:
|
102 |
+
success = success+1
|
103 |
+
|
104 |
+
else:
|
105 |
+
fails = fails+1
|
106 |
+
|
107 |
+
max_itter = max_itter-1
|
108 |
+
|
109 |
+
|
110 |
+
if fails > success:
|
111 |
+
return(False)
|
112 |
+
|
113 |
+
else:
|
114 |
+
return(True)
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
Recognition = FaceRec()
|
122 |
+
print(Recognition.verify())
|
123 |
+
|