vatsaldin commited on
Commit
480dfe3
1 Parent(s): c31ffec

finetuned model with ontotext data

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: xlm-roberta-base-finetuned-generic_ner_ontonotes-ner-2024_08_14
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # xlm-roberta-base-finetuned-generic_ner_ontonotes-ner-2024_08_14
20
+
21
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0851
24
+ - Precision: 0.8634
25
+ - Recall: 0.8879
26
+ - F1: 0.8755
27
+ - Accuracy: 0.9783
28
+ - O Precision: 0.9952
29
+ - O Recall: 0.9917
30
+ - O F1: 0.9934
31
+ - B-cardinal Precision: 0.8585
32
+ - B-cardinal Recall: 0.8994
33
+ - B-cardinal F1: 0.8784
34
+ - B-date Precision: 0.8627
35
+ - B-date Recall: 0.8796
36
+ - B-date F1: 0.8711
37
+ - I-date Precision: 0.8742
38
+ - I-date Recall: 0.9023
39
+ - I-date F1: 0.8880
40
+ - B-person Precision: 0.9204
41
+ - B-person Recall: 0.9596
42
+ - B-person F1: 0.9396
43
+ - I-person Precision: 0.9452
44
+ - I-person Recall: 0.9818
45
+ - I-person F1: 0.9632
46
+ - B-norp Precision: 0.8898
47
+ - B-norp Recall: 0.9311
48
+ - B-norp F1: 0.9100
49
+ - B-gpe Precision: 0.9471
50
+ - B-gpe Recall: 0.9395
51
+ - B-gpe F1: 0.9433
52
+ - I-gpe Precision: 0.9119
53
+ - I-gpe Recall: 0.8846
54
+ - I-gpe F1: 0.8980
55
+ - B-law Precision: 0.5909
56
+ - B-law Recall: 0.8667
57
+ - B-law F1: 0.7027
58
+ - I-law Precision: 0.5170
59
+ - I-law Recall: 0.7982
60
+ - I-law F1: 0.6276
61
+ - B-org Precision: 0.9061
62
+ - B-org Recall: 0.8716
63
+ - B-org F1: 0.8885
64
+ - I-org Precision: 0.9212
65
+ - I-org Recall: 0.9075
66
+ - I-org F1: 0.9143
67
+ - B-percent Precision: 0.9321
68
+ - B-percent Recall: 0.8996
69
+ - B-percent F1: 0.9156
70
+ - I-percent Precision: 0.8822
71
+ - I-percent Recall: 0.9887
72
+ - I-percent F1: 0.9324
73
+ - B-ordinal Precision: 0.8356
74
+ - B-ordinal Recall: 0.8356
75
+ - B-ordinal F1: 0.8356
76
+ - B-money Precision: 0.9051
77
+ - B-money Recall: 0.9304
78
+ - B-money F1: 0.9176
79
+ - I-money Precision: 0.9372
80
+ - I-money Recall: 0.9753
81
+ - I-money F1: 0.9558
82
+ - B-work Of Art Precision: 0.5354
83
+ - B-work Of Art Recall: 0.6355
84
+ - B-work Of Art F1: 0.5812
85
+ - I-work Of Art Precision: 0.5849
86
+ - I-work Of Art Recall: 0.6998
87
+ - I-work Of Art F1: 0.6372
88
+ - B-fac Precision: 0.4833
89
+ - B-fac Recall: 0.6312
90
+ - B-fac F1: 0.5474
91
+ - B-time Precision: 0.7782
92
+ - B-time Recall: 0.8299
93
+ - B-time F1: 0.8032
94
+ - I-cardinal Precision: 0.7683
95
+ - I-cardinal Recall: 0.8892
96
+ - I-cardinal F1: 0.8243
97
+ - B-loc Precision: 0.8206
98
+ - B-loc Recall: 0.7530
99
+ - B-loc F1: 0.7854
100
+ - B-quantity Precision: 0.8731
101
+ - B-quantity Recall: 0.9
102
+ - B-quantity F1: 0.8864
103
+ - I-quantity Precision: 0.8889
104
+ - I-quantity Recall: 0.9706
105
+ - I-quantity F1: 0.9279
106
+ - I-norp Precision: 0.6792
107
+ - I-norp Recall: 0.5373
108
+ - I-norp F1: 0.6000
109
+ - I-loc Precision: 0.7721
110
+ - I-loc Recall: 0.7692
111
+ - I-loc F1: 0.7706
112
+ - B-product Precision: 0.5447
113
+ - B-product Recall: 0.6979
114
+ - B-product F1: 0.6119
115
+ - I-time Precision: 0.7694
116
+ - I-time Recall: 0.8766
117
+ - I-time F1: 0.8195
118
+ - B-event Precision: 0.7308
119
+ - B-event Recall: 0.5733
120
+ - B-event F1: 0.6425
121
+ - I-event Precision: 0.7951
122
+ - I-event Recall: 0.6198
123
+ - I-event F1: 0.6966
124
+ - I-fac Precision: 0.6463
125
+ - I-fac Recall: 0.6909
126
+ - I-fac F1: 0.6678
127
+ - B-language Precision: 0.8387
128
+ - B-language Recall: 0.65
129
+ - B-language F1: 0.7324
130
+ - I-product Precision: 0.8480
131
+ - I-product Recall: 0.8192
132
+ - I-product F1: 0.8333
133
+ - I-ordinal Precision: 1.0
134
+ - I-ordinal Recall: 0.0
135
+ - I-ordinal F1: 0.0
136
+ - I-language Precision: 1.0
137
+ - I-language Recall: 1.0
138
+ - I-language F1: 1.0
139
+
140
+ ## Model description
141
+
142
+ More information needed
143
+
144
+ ## Intended uses & limitations
145
+
146
+ More information needed
147
+
148
+ ## Training and evaluation data
149
+
150
+ More information needed
151
+
152
+ ## Training procedure
153
+
154
+ ### Training hyperparameters
155
+
156
+ The following hyperparameters were used during training:
157
+ - learning_rate: 2e-05
158
+ - train_batch_size: 16
159
+ - eval_batch_size: 16
160
+ - seed: 42
161
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
162
+ - lr_scheduler_type: linear
163
+ - lr_scheduler_warmup_steps: 500
164
+ - num_epochs: 3
165
+
166
+ ### Training results
167
+
168
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | O Precision | O Recall | O F1 | B-cardinal Precision | B-cardinal Recall | B-cardinal F1 | B-date Precision | B-date Recall | B-date F1 | I-date Precision | I-date Recall | I-date F1 | B-person Precision | B-person Recall | B-person F1 | I-person Precision | I-person Recall | I-person F1 | B-norp Precision | B-norp Recall | B-norp F1 | B-gpe Precision | B-gpe Recall | B-gpe F1 | I-gpe Precision | I-gpe Recall | I-gpe F1 | B-law Precision | B-law Recall | B-law F1 | I-law Precision | I-law Recall | I-law F1 | B-org Precision | B-org Recall | B-org F1 | I-org Precision | I-org Recall | I-org F1 | B-percent Precision | B-percent Recall | B-percent F1 | I-percent Precision | I-percent Recall | I-percent F1 | B-ordinal Precision | B-ordinal Recall | B-ordinal F1 | B-money Precision | B-money Recall | B-money F1 | I-money Precision | I-money Recall | I-money F1 | B-work Of Art Precision | B-work Of Art Recall | B-work Of Art F1 | I-work Of Art Precision | I-work Of Art Recall | I-work Of Art F1 | B-fac Precision | B-fac Recall | B-fac F1 | B-time Precision | B-time Recall | B-time F1 | I-cardinal Precision | I-cardinal Recall | I-cardinal F1 | B-loc Precision | B-loc Recall | B-loc F1 | B-quantity Precision | B-quantity Recall | B-quantity F1 | I-quantity Precision | I-quantity Recall | I-quantity F1 | I-norp Precision | I-norp Recall | I-norp F1 | I-loc Precision | I-loc Recall | I-loc F1 | B-product Precision | B-product Recall | B-product F1 | I-time Precision | I-time Recall | I-time F1 | B-event Precision | B-event Recall | B-event F1 | I-event Precision | I-event Recall | I-event F1 | I-fac Precision | I-fac Recall | I-fac F1 | B-language Precision | B-language Recall | B-language F1 | I-product Precision | I-product Recall | I-product F1 | I-ordinal Precision | I-ordinal Recall | I-ordinal F1 | I-language Precision | I-language Recall | I-language F1 |
169
+ |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|:-----------:|:--------:|:------:|:--------------------:|:-----------------:|:-------------:|:----------------:|:-------------:|:---------:|:----------------:|:-------------:|:---------:|:------------------:|:---------------:|:-----------:|:------------------:|:---------------:|:-----------:|:----------------:|:-------------:|:---------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:-----------------------:|:--------------------:|:----------------:|:-----------------------:|:--------------------:|:----------------:|:---------------:|:------------:|:--------:|:----------------:|:-------------:|:---------:|:--------------------:|:-----------------:|:-------------:|:---------------:|:------------:|:--------:|:--------------------:|:-----------------:|:-------------:|:--------------------:|:-----------------:|:-------------:|:----------------:|:-------------:|:---------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------:|:-----------------:|:-------------:|
170
+ | 0.43 | 0.3332 | 1248 | 0.1141 | 0.7842 | 0.8162 | 0.7999 | 0.9680 | 0.9940 | 0.9886 | 0.9913 | 0.8180 | 0.8605 | 0.8387 | 0.8343 | 0.8244 | 0.8294 | 0.8103 | 0.9023 | 0.8538 | 0.8776 | 0.9537 | 0.9141 | 0.9234 | 0.9693 | 0.9458 | 0.8485 | 0.9146 | 0.8803 | 0.9480 | 0.8583 | 0.9009 | 0.8588 | 0.7931 | 0.8246 | 1.0 | 0.0 | 0.0 | 0.3333 | 0.6754 | 0.4464 | 0.8220 | 0.8229 | 0.8224 | 0.8696 | 0.8734 | 0.8715 | 0.8902 | 0.9563 | 0.9221 | 0.9170 | 0.9170 | 0.9170 | 0.825 | 0.7911 | 0.8077 | 0.7884 | 0.8719 | 0.8280 | 0.9129 | 0.9593 | 0.9355 | 0.3367 | 0.1542 | 0.2115 | 0.4216 | 0.6862 | 0.5223 | 0.4031 | 0.325 | 0.3599 | 0.6897 | 0.4149 | 0.5181 | 0.6894 | 0.9125 | 0.7854 | 0.4729 | 0.6128 | 0.5339 | 0.8872 | 0.9077 | 0.8973 | 0.8442 | 0.9559 | 0.8966 | 0.75 | 0.0448 | 0.0845 | 0.5819 | 0.6374 | 0.6084 | 0.2260 | 0.6875 | 0.3402 | 0.7253 | 0.7437 | 0.7344 | 0.6857 | 0.2069 | 0.3179 | 0.5475 | 0.6832 | 0.6078 | 0.4843 | 0.6727 | 0.5632 | 1.0 | 0.025 | 0.0488 | 0.5455 | 0.1695 | 0.2586 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
171
+ | 0.105 | 0.6663 | 2496 | 0.0947 | 0.8324 | 0.8524 | 0.8423 | 0.9745 | 0.9920 | 0.9929 | 0.9924 | 0.8393 | 0.8623 | 0.8507 | 0.8746 | 0.8149 | 0.8437 | 0.8787 | 0.8613 | 0.8699 | 0.9319 | 0.9185 | 0.9252 | 0.9546 | 0.9673 | 0.9609 | 0.8904 | 0.9124 | 0.9012 | 0.8901 | 0.9615 | 0.9244 | 0.8396 | 0.9025 | 0.8699 | 0.6 | 0.4 | 0.48 | 0.4565 | 0.5526 | 0.5 | 0.8549 | 0.8488 | 0.8519 | 0.9132 | 0.8534 | 0.8823 | 0.9579 | 0.8952 | 0.9255 | 0.9203 | 0.9585 | 0.9390 | 0.8270 | 0.8185 | 0.8227 | 0.8616 | 0.9192 | 0.8895 | 0.9241 | 0.9738 | 0.9483 | 0.5193 | 0.5654 | 0.5414 | 0.5861 | 0.6682 | 0.6245 | 0.4261 | 0.4688 | 0.4464 | 0.7593 | 0.6805 | 0.7177 | 0.8645 | 0.8367 | 0.8504 | 0.8719 | 0.5396 | 0.6667 | 0.8769 | 0.8769 | 0.8769 | 0.8629 | 0.9485 | 0.9037 | 0.7179 | 0.4179 | 0.5283 | 0.8259 | 0.6081 | 0.7004 | 0.4889 | 0.6875 | 0.5714 | 0.74 | 0.8196 | 0.7778 | 0.7566 | 0.4957 | 0.5990 | 0.7438 | 0.6556 | 0.6969 | 0.6076 | 0.6364 | 0.6217 | 0.5246 | 0.8 | 0.6337 | 0.8489 | 0.6667 | 0.7468 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
172
+ | 0.0911 | 0.9995 | 3744 | 0.0930 | 0.8390 | 0.8678 | 0.8531 | 0.9746 | 0.9946 | 0.9902 | 0.9924 | 0.8656 | 0.8358 | 0.8505 | 0.8726 | 0.8452 | 0.8587 | 0.8527 | 0.9116 | 0.8812 | 0.8653 | 0.9684 | 0.9140 | 0.9111 | 0.9855 | 0.9468 | 0.8994 | 0.9176 | 0.9084 | 0.9277 | 0.9374 | 0.9325 | 0.8923 | 0.8696 | 0.8808 | 0.5667 | 0.7556 | 0.6476 | 0.4024 | 0.5789 | 0.4748 | 0.8818 | 0.8469 | 0.8640 | 0.8967 | 0.8967 | 0.8967 | 0.9327 | 0.9083 | 0.9204 | 0.8680 | 0.9925 | 0.9261 | 0.8854 | 0.7671 | 0.8220 | 0.8770 | 0.9331 | 0.9042 | 0.9266 | 0.9724 | 0.9489 | 0.4681 | 0.6168 | 0.5323 | 0.5297 | 0.6637 | 0.5892 | 0.5475 | 0.6125 | 0.5782 | 0.72 | 0.7469 | 0.7332 | 0.7570 | 0.8717 | 0.8103 | 0.8699 | 0.6524 | 0.7456 | 0.8188 | 0.8692 | 0.8433 | 0.8248 | 0.9522 | 0.8840 | 0.6364 | 0.5224 | 0.5738 | 0.8806 | 0.6484 | 0.7468 | 0.5138 | 0.5833 | 0.5463 | 0.7733 | 0.8418 | 0.8061 | 0.7319 | 0.4353 | 0.5459 | 0.7147 | 0.6556 | 0.6839 | 0.6151 | 0.6218 | 0.6184 | 0.7429 | 0.65 | 0.6933 | 0.7669 | 0.7062 | 0.7353 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
173
+ | 0.0687 | 1.3326 | 4992 | 0.0859 | 0.8593 | 0.8739 | 0.8665 | 0.9773 | 0.9938 | 0.9923 | 0.9930 | 0.8537 | 0.8959 | 0.8742 | 0.8901 | 0.8505 | 0.8699 | 0.8793 | 0.8914 | 0.8853 | 0.9347 | 0.9473 | 0.9410 | 0.9343 | 0.9822 | 0.9577 | 0.9099 | 0.9154 | 0.9126 | 0.9510 | 0.9254 | 0.9380 | 0.8698 | 0.8816 | 0.8757 | 0.6383 | 0.6667 | 0.6522 | 0.6562 | 0.5526 | 0.6 | 0.8763 | 0.8787 | 0.8775 | 0.8960 | 0.9126 | 0.9042 | 0.9298 | 0.9258 | 0.9278 | 0.8931 | 0.9774 | 0.9333 | 0.8322 | 0.8151 | 0.8235 | 0.9126 | 0.9304 | 0.9214 | 0.9372 | 0.9753 | 0.9558 | 0.5642 | 0.5748 | 0.5694 | 0.5895 | 0.6614 | 0.6234 | 0.4837 | 0.5563 | 0.5174 | 0.7592 | 0.7718 | 0.7654 | 0.7927 | 0.8805 | 0.8343 | 0.7432 | 0.75 | 0.7466 | 0.8551 | 0.9077 | 0.8806 | 0.8961 | 0.9191 | 0.9074 | 0.75 | 0.4925 | 0.5946 | 0.7807 | 0.7692 | 0.7749 | 0.5285 | 0.6771 | 0.5936 | 0.7326 | 0.8671 | 0.7942 | 0.7314 | 0.5517 | 0.6290 | 0.7697 | 0.6722 | 0.7176 | 0.6778 | 0.6655 | 0.6716 | 0.7368 | 0.7 | 0.7179 | 0.8531 | 0.6893 | 0.7625 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
174
+ | 0.0638 | 1.6658 | 6240 | 0.0855 | 0.8512 | 0.8825 | 0.8665 | 0.9769 | 0.9947 | 0.9912 | 0.9930 | 0.8476 | 0.8985 | 0.8723 | 0.8660 | 0.8737 | 0.8698 | 0.8713 | 0.8919 | 0.8815 | 0.9208 | 0.9577 | 0.9389 | 0.9413 | 0.9786 | 0.9596 | 0.9022 | 0.9258 | 0.9139 | 0.9359 | 0.9535 | 0.9446 | 0.9280 | 0.8891 | 0.9081 | 0.5818 | 0.7111 | 0.64 | 0.5780 | 0.5526 | 0.5650 | 0.8955 | 0.8685 | 0.8818 | 0.9273 | 0.8887 | 0.9076 | 0.9185 | 0.9345 | 0.9264 | 0.9231 | 0.9509 | 0.9368 | 0.8530 | 0.8151 | 0.8336 | 0.9187 | 0.9443 | 0.9313 | 0.9579 | 0.9593 | 0.9586 | 0.4462 | 0.6776 | 0.5380 | 0.4534 | 0.7472 | 0.5644 | 0.4554 | 0.6375 | 0.5312 | 0.7578 | 0.8050 | 0.7807 | 0.7677 | 0.8863 | 0.8227 | 0.8517 | 0.6829 | 0.7580 | 0.8369 | 0.9077 | 0.8708 | 0.8854 | 0.9375 | 0.9107 | 0.8919 | 0.4925 | 0.6346 | 0.8918 | 0.6337 | 0.7409 | 0.5349 | 0.7188 | 0.6133 | 0.7778 | 0.8418 | 0.8085 | 0.7590 | 0.5431 | 0.6332 | 0.7812 | 0.6198 | 0.6912 | 0.5287 | 0.6691 | 0.5907 | 0.8214 | 0.575 | 0.6765 | 0.8447 | 0.7684 | 0.8047 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
175
+ | 0.059 | 1.9989 | 7488 | 0.0828 | 0.8576 | 0.8837 | 0.8705 | 0.9778 | 0.9945 | 0.9919 | 0.9932 | 0.8352 | 0.9038 | 0.8682 | 0.8651 | 0.8749 | 0.8699 | 0.8784 | 0.8875 | 0.8829 | 0.9139 | 0.9589 | 0.9359 | 0.9361 | 0.9826 | 0.9588 | 0.8975 | 0.9311 | 0.9140 | 0.9323 | 0.9481 | 0.9401 | 0.8806 | 0.9175 | 0.8987 | 0.6 | 0.6667 | 0.6316 | 0.576 | 0.6316 | 0.6025 | 0.8991 | 0.8673 | 0.8829 | 0.9162 | 0.9005 | 0.9083 | 0.9330 | 0.9127 | 0.9227 | 0.8966 | 0.9811 | 0.9369 | 0.7907 | 0.8151 | 0.8027 | 0.8939 | 0.9387 | 0.9158 | 0.9448 | 0.9709 | 0.9577 | 0.5774 | 0.6449 | 0.6093 | 0.6834 | 0.6772 | 0.6803 | 0.5024 | 0.6438 | 0.5644 | 0.7870 | 0.7510 | 0.7686 | 0.7655 | 0.8659 | 0.8126 | 0.8710 | 0.6585 | 0.75 | 0.8992 | 0.8923 | 0.8958 | 0.8969 | 0.9596 | 0.9272 | 0.8571 | 0.5373 | 0.6606 | 0.8517 | 0.6520 | 0.7386 | 0.5610 | 0.7188 | 0.6301 | 0.8185 | 0.8133 | 0.8159 | 0.7396 | 0.6121 | 0.6698 | 0.8033 | 0.6749 | 0.7335 | 0.5574 | 0.7418 | 0.6365 | 0.9259 | 0.625 | 0.7463 | 0.8333 | 0.7627 | 0.7965 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
176
+ | 0.0469 | 2.3321 | 8736 | 0.0843 | 0.8674 | 0.8854 | 0.8763 | 0.9785 | 0.9944 | 0.9921 | 0.9932 | 0.8763 | 0.8817 | 0.8790 | 0.8636 | 0.8826 | 0.8730 | 0.8583 | 0.9116 | 0.8842 | 0.9310 | 0.9556 | 0.9432 | 0.9548 | 0.9818 | 0.9681 | 0.8977 | 0.9266 | 0.9119 | 0.9468 | 0.9398 | 0.9433 | 0.9367 | 0.8876 | 0.9115 | 0.6 | 0.8 | 0.6857 | 0.6083 | 0.6404 | 0.6239 | 0.9025 | 0.8724 | 0.8872 | 0.9201 | 0.9043 | 0.9121 | 0.9361 | 0.8952 | 0.9152 | 0.8680 | 0.9925 | 0.9261 | 0.8339 | 0.8253 | 0.8296 | 0.9066 | 0.9192 | 0.9129 | 0.9385 | 0.9767 | 0.9573 | 0.5744 | 0.6495 | 0.6096 | 0.6268 | 0.6975 | 0.6603 | 0.4928 | 0.6375 | 0.5559 | 0.8 | 0.7801 | 0.7899 | 0.7943 | 0.9009 | 0.8443 | 0.7980 | 0.7226 | 0.7584 | 0.8992 | 0.8923 | 0.8958 | 0.8859 | 0.9706 | 0.9263 | 0.8182 | 0.5373 | 0.6486 | 0.8016 | 0.7399 | 0.7695 | 0.5185 | 0.7292 | 0.6061 | 0.7604 | 0.8639 | 0.8089 | 0.7273 | 0.6207 | 0.6698 | 0.7753 | 0.6749 | 0.7216 | 0.6168 | 0.72 | 0.6644 | 0.9259 | 0.625 | 0.7463 | 0.8114 | 0.8023 | 0.8068 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
177
+ | 0.0439 | 2.6652 | 9984 | 0.0868 | 0.8635 | 0.8846 | 0.8739 | 0.9781 | 0.9953 | 0.9914 | 0.9934 | 0.8517 | 0.8923 | 0.8716 | 0.8660 | 0.8778 | 0.8719 | 0.8604 | 0.9097 | 0.8844 | 0.9214 | 0.9623 | 0.9414 | 0.9377 | 0.9842 | 0.9604 | 0.8797 | 0.9258 | 0.9022 | 0.9402 | 0.9323 | 0.9362 | 0.8920 | 0.9040 | 0.8980 | 0.6066 | 0.8222 | 0.6981 | 0.4802 | 0.7456 | 0.5842 | 0.9044 | 0.8693 | 0.8865 | 0.9143 | 0.9122 | 0.9133 | 0.9321 | 0.8996 | 0.9156 | 0.8763 | 0.9887 | 0.9291 | 0.8385 | 0.8356 | 0.8370 | 0.9046 | 0.9248 | 0.9146 | 0.9321 | 0.9782 | 0.9546 | 0.6207 | 0.5888 | 0.6043 | 0.6463 | 0.6930 | 0.6688 | 0.5575 | 0.6062 | 0.5808 | 0.7787 | 0.8174 | 0.7976 | 0.7440 | 0.9067 | 0.8173 | 0.7508 | 0.7530 | 0.7519 | 0.8712 | 0.8846 | 0.8779 | 0.88 | 0.9706 | 0.9231 | 0.6792 | 0.5373 | 0.6000 | 0.7948 | 0.7802 | 0.7874 | 0.5378 | 0.6667 | 0.5953 | 0.7744 | 0.8797 | 0.8237 | 0.7366 | 0.5905 | 0.6555 | 0.7912 | 0.6474 | 0.7121 | 0.6809 | 0.6982 | 0.6894 | 0.6744 | 0.725 | 0.6988 | 0.7967 | 0.8192 | 0.8078 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
178
+ | 0.0435 | 2.9984 | 11232 | 0.0851 | 0.8634 | 0.8879 | 0.8755 | 0.9783 | 0.9952 | 0.9917 | 0.9934 | 0.8585 | 0.8994 | 0.8784 | 0.8627 | 0.8796 | 0.8711 | 0.8742 | 0.9023 | 0.8880 | 0.9204 | 0.9596 | 0.9396 | 0.9452 | 0.9818 | 0.9632 | 0.8898 | 0.9311 | 0.9100 | 0.9471 | 0.9395 | 0.9433 | 0.9119 | 0.8846 | 0.8980 | 0.5909 | 0.8667 | 0.7027 | 0.5170 | 0.7982 | 0.6276 | 0.9061 | 0.8716 | 0.8885 | 0.9212 | 0.9075 | 0.9143 | 0.9321 | 0.8996 | 0.9156 | 0.8822 | 0.9887 | 0.9324 | 0.8356 | 0.8356 | 0.8356 | 0.9051 | 0.9304 | 0.9176 | 0.9372 | 0.9753 | 0.9558 | 0.5354 | 0.6355 | 0.5812 | 0.5849 | 0.6998 | 0.6372 | 0.4833 | 0.6312 | 0.5474 | 0.7782 | 0.8299 | 0.8032 | 0.7683 | 0.8892 | 0.8243 | 0.8206 | 0.7530 | 0.7854 | 0.8731 | 0.9 | 0.8864 | 0.8889 | 0.9706 | 0.9279 | 0.6792 | 0.5373 | 0.6000 | 0.7721 | 0.7692 | 0.7706 | 0.5447 | 0.6979 | 0.6119 | 0.7694 | 0.8766 | 0.8195 | 0.7308 | 0.5733 | 0.6425 | 0.7951 | 0.6198 | 0.6966 | 0.6463 | 0.6909 | 0.6678 | 0.8387 | 0.65 | 0.7324 | 0.8480 | 0.8192 | 0.8333 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
179
+
180
+
181
+ ### Framework versions
182
+
183
+ - Transformers 4.42.4
184
+ - Pytorch 2.3.1+cu121
185
+ - Datasets 2.21.0
186
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "id2label": {
15
+ "0": "O",
16
+ "1": "B-CARDINAL",
17
+ "2": "B-DATE",
18
+ "3": "I-DATE",
19
+ "4": "B-PERSON",
20
+ "5": "I-PERSON",
21
+ "6": "B-NORP",
22
+ "7": "B-GPE",
23
+ "8": "I-GPE",
24
+ "9": "B-LAW",
25
+ "10": "I-LAW",
26
+ "11": "B-ORG",
27
+ "12": "I-ORG",
28
+ "13": "B-PERCENT",
29
+ "14": "I-PERCENT",
30
+ "15": "B-ORDINAL",
31
+ "16": "B-MONEY",
32
+ "17": "I-MONEY",
33
+ "18": "B-WORK_OF_ART",
34
+ "19": "I-WORK_OF_ART",
35
+ "20": "B-FAC",
36
+ "21": "B-TIME",
37
+ "22": "I-CARDINAL",
38
+ "23": "B-LOC",
39
+ "24": "B-QUANTITY",
40
+ "25": "I-QUANTITY",
41
+ "26": "I-NORP",
42
+ "27": "I-LOC",
43
+ "28": "B-PRODUCT",
44
+ "29": "I-TIME",
45
+ "30": "B-EVENT",
46
+ "31": "I-EVENT",
47
+ "32": "I-FAC",
48
+ "33": "B-LANGUAGE",
49
+ "34": "I-PRODUCT",
50
+ "35": "I-ORDINAL",
51
+ "36": "I-LANGUAGE"
52
+ },
53
+ "initializer_range": 0.02,
54
+ "intermediate_size": 3072,
55
+ "label2id": {
56
+ "B-CARDINAL": 1,
57
+ "B-DATE": 2,
58
+ "B-EVENT": 30,
59
+ "B-FAC": 20,
60
+ "B-GPE": 7,
61
+ "B-LANGUAGE": 33,
62
+ "B-LAW": 9,
63
+ "B-LOC": 23,
64
+ "B-MONEY": 16,
65
+ "B-NORP": 6,
66
+ "B-ORDINAL": 15,
67
+ "B-ORG": 11,
68
+ "B-PERCENT": 13,
69
+ "B-PERSON": 4,
70
+ "B-PRODUCT": 28,
71
+ "B-QUANTITY": 24,
72
+ "B-TIME": 21,
73
+ "B-WORK_OF_ART": 18,
74
+ "I-CARDINAL": 22,
75
+ "I-DATE": 3,
76
+ "I-EVENT": 31,
77
+ "I-FAC": 32,
78
+ "I-GPE": 8,
79
+ "I-LANGUAGE": 36,
80
+ "I-LAW": 10,
81
+ "I-LOC": 27,
82
+ "I-MONEY": 17,
83
+ "I-NORP": 26,
84
+ "I-ORDINAL": 35,
85
+ "I-ORG": 12,
86
+ "I-PERCENT": 14,
87
+ "I-PERSON": 5,
88
+ "I-PRODUCT": 34,
89
+ "I-QUANTITY": 25,
90
+ "I-TIME": 29,
91
+ "I-WORK_OF_ART": 19,
92
+ "O": 0
93
+ },
94
+ "layer_norm_eps": 1e-05,
95
+ "max_position_embeddings": 514,
96
+ "model_type": "xlm-roberta",
97
+ "num_attention_heads": 12,
98
+ "num_hidden_layers": 12,
99
+ "output_past": true,
100
+ "pad_token_id": 1,
101
+ "position_embedding_type": "absolute",
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.42.4",
104
+ "type_vocab_size": 1,
105
+ "use_cache": true,
106
+ "vocab_size": 250002
107
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b659664b20030f24e079c0d6b39e71c4fdef4160c1edfabeb08ddd337fcb9a04
3
+ size 1109950092
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e6cc9870876ebe4a3af0b2232c45771fb9f367cd5ec5abd377cde7b04ac251
3
+ size 5112