finetuned model with ontotext data
Browse files- .gitattributes +1 -0
- README.md +186 -0
- config.json +107 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-base-finetuned-generic_ner_ontonotes-ner-2024_08_14
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-base-finetuned-generic_ner_ontonotes-ner-2024_08_14
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0851
|
24 |
+
- Precision: 0.8634
|
25 |
+
- Recall: 0.8879
|
26 |
+
- F1: 0.8755
|
27 |
+
- Accuracy: 0.9783
|
28 |
+
- O Precision: 0.9952
|
29 |
+
- O Recall: 0.9917
|
30 |
+
- O F1: 0.9934
|
31 |
+
- B-cardinal Precision: 0.8585
|
32 |
+
- B-cardinal Recall: 0.8994
|
33 |
+
- B-cardinal F1: 0.8784
|
34 |
+
- B-date Precision: 0.8627
|
35 |
+
- B-date Recall: 0.8796
|
36 |
+
- B-date F1: 0.8711
|
37 |
+
- I-date Precision: 0.8742
|
38 |
+
- I-date Recall: 0.9023
|
39 |
+
- I-date F1: 0.8880
|
40 |
+
- B-person Precision: 0.9204
|
41 |
+
- B-person Recall: 0.9596
|
42 |
+
- B-person F1: 0.9396
|
43 |
+
- I-person Precision: 0.9452
|
44 |
+
- I-person Recall: 0.9818
|
45 |
+
- I-person F1: 0.9632
|
46 |
+
- B-norp Precision: 0.8898
|
47 |
+
- B-norp Recall: 0.9311
|
48 |
+
- B-norp F1: 0.9100
|
49 |
+
- B-gpe Precision: 0.9471
|
50 |
+
- B-gpe Recall: 0.9395
|
51 |
+
- B-gpe F1: 0.9433
|
52 |
+
- I-gpe Precision: 0.9119
|
53 |
+
- I-gpe Recall: 0.8846
|
54 |
+
- I-gpe F1: 0.8980
|
55 |
+
- B-law Precision: 0.5909
|
56 |
+
- B-law Recall: 0.8667
|
57 |
+
- B-law F1: 0.7027
|
58 |
+
- I-law Precision: 0.5170
|
59 |
+
- I-law Recall: 0.7982
|
60 |
+
- I-law F1: 0.6276
|
61 |
+
- B-org Precision: 0.9061
|
62 |
+
- B-org Recall: 0.8716
|
63 |
+
- B-org F1: 0.8885
|
64 |
+
- I-org Precision: 0.9212
|
65 |
+
- I-org Recall: 0.9075
|
66 |
+
- I-org F1: 0.9143
|
67 |
+
- B-percent Precision: 0.9321
|
68 |
+
- B-percent Recall: 0.8996
|
69 |
+
- B-percent F1: 0.9156
|
70 |
+
- I-percent Precision: 0.8822
|
71 |
+
- I-percent Recall: 0.9887
|
72 |
+
- I-percent F1: 0.9324
|
73 |
+
- B-ordinal Precision: 0.8356
|
74 |
+
- B-ordinal Recall: 0.8356
|
75 |
+
- B-ordinal F1: 0.8356
|
76 |
+
- B-money Precision: 0.9051
|
77 |
+
- B-money Recall: 0.9304
|
78 |
+
- B-money F1: 0.9176
|
79 |
+
- I-money Precision: 0.9372
|
80 |
+
- I-money Recall: 0.9753
|
81 |
+
- I-money F1: 0.9558
|
82 |
+
- B-work Of Art Precision: 0.5354
|
83 |
+
- B-work Of Art Recall: 0.6355
|
84 |
+
- B-work Of Art F1: 0.5812
|
85 |
+
- I-work Of Art Precision: 0.5849
|
86 |
+
- I-work Of Art Recall: 0.6998
|
87 |
+
- I-work Of Art F1: 0.6372
|
88 |
+
- B-fac Precision: 0.4833
|
89 |
+
- B-fac Recall: 0.6312
|
90 |
+
- B-fac F1: 0.5474
|
91 |
+
- B-time Precision: 0.7782
|
92 |
+
- B-time Recall: 0.8299
|
93 |
+
- B-time F1: 0.8032
|
94 |
+
- I-cardinal Precision: 0.7683
|
95 |
+
- I-cardinal Recall: 0.8892
|
96 |
+
- I-cardinal F1: 0.8243
|
97 |
+
- B-loc Precision: 0.8206
|
98 |
+
- B-loc Recall: 0.7530
|
99 |
+
- B-loc F1: 0.7854
|
100 |
+
- B-quantity Precision: 0.8731
|
101 |
+
- B-quantity Recall: 0.9
|
102 |
+
- B-quantity F1: 0.8864
|
103 |
+
- I-quantity Precision: 0.8889
|
104 |
+
- I-quantity Recall: 0.9706
|
105 |
+
- I-quantity F1: 0.9279
|
106 |
+
- I-norp Precision: 0.6792
|
107 |
+
- I-norp Recall: 0.5373
|
108 |
+
- I-norp F1: 0.6000
|
109 |
+
- I-loc Precision: 0.7721
|
110 |
+
- I-loc Recall: 0.7692
|
111 |
+
- I-loc F1: 0.7706
|
112 |
+
- B-product Precision: 0.5447
|
113 |
+
- B-product Recall: 0.6979
|
114 |
+
- B-product F1: 0.6119
|
115 |
+
- I-time Precision: 0.7694
|
116 |
+
- I-time Recall: 0.8766
|
117 |
+
- I-time F1: 0.8195
|
118 |
+
- B-event Precision: 0.7308
|
119 |
+
- B-event Recall: 0.5733
|
120 |
+
- B-event F1: 0.6425
|
121 |
+
- I-event Precision: 0.7951
|
122 |
+
- I-event Recall: 0.6198
|
123 |
+
- I-event F1: 0.6966
|
124 |
+
- I-fac Precision: 0.6463
|
125 |
+
- I-fac Recall: 0.6909
|
126 |
+
- I-fac F1: 0.6678
|
127 |
+
- B-language Precision: 0.8387
|
128 |
+
- B-language Recall: 0.65
|
129 |
+
- B-language F1: 0.7324
|
130 |
+
- I-product Precision: 0.8480
|
131 |
+
- I-product Recall: 0.8192
|
132 |
+
- I-product F1: 0.8333
|
133 |
+
- I-ordinal Precision: 1.0
|
134 |
+
- I-ordinal Recall: 0.0
|
135 |
+
- I-ordinal F1: 0.0
|
136 |
+
- I-language Precision: 1.0
|
137 |
+
- I-language Recall: 1.0
|
138 |
+
- I-language F1: 1.0
|
139 |
+
|
140 |
+
## Model description
|
141 |
+
|
142 |
+
More information needed
|
143 |
+
|
144 |
+
## Intended uses & limitations
|
145 |
+
|
146 |
+
More information needed
|
147 |
+
|
148 |
+
## Training and evaluation data
|
149 |
+
|
150 |
+
More information needed
|
151 |
+
|
152 |
+
## Training procedure
|
153 |
+
|
154 |
+
### Training hyperparameters
|
155 |
+
|
156 |
+
The following hyperparameters were used during training:
|
157 |
+
- learning_rate: 2e-05
|
158 |
+
- train_batch_size: 16
|
159 |
+
- eval_batch_size: 16
|
160 |
+
- seed: 42
|
161 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
162 |
+
- lr_scheduler_type: linear
|
163 |
+
- lr_scheduler_warmup_steps: 500
|
164 |
+
- num_epochs: 3
|
165 |
+
|
166 |
+
### Training results
|
167 |
+
|
168 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | O Precision | O Recall | O F1 | B-cardinal Precision | B-cardinal Recall | B-cardinal F1 | B-date Precision | B-date Recall | B-date F1 | I-date Precision | I-date Recall | I-date F1 | B-person Precision | B-person Recall | B-person F1 | I-person Precision | I-person Recall | I-person F1 | B-norp Precision | B-norp Recall | B-norp F1 | B-gpe Precision | B-gpe Recall | B-gpe F1 | I-gpe Precision | I-gpe Recall | I-gpe F1 | B-law Precision | B-law Recall | B-law F1 | I-law Precision | I-law Recall | I-law F1 | B-org Precision | B-org Recall | B-org F1 | I-org Precision | I-org Recall | I-org F1 | B-percent Precision | B-percent Recall | B-percent F1 | I-percent Precision | I-percent Recall | I-percent F1 | B-ordinal Precision | B-ordinal Recall | B-ordinal F1 | B-money Precision | B-money Recall | B-money F1 | I-money Precision | I-money Recall | I-money F1 | B-work Of Art Precision | B-work Of Art Recall | B-work Of Art F1 | I-work Of Art Precision | I-work Of Art Recall | I-work Of Art F1 | B-fac Precision | B-fac Recall | B-fac F1 | B-time Precision | B-time Recall | B-time F1 | I-cardinal Precision | I-cardinal Recall | I-cardinal F1 | B-loc Precision | B-loc Recall | B-loc F1 | B-quantity Precision | B-quantity Recall | B-quantity F1 | I-quantity Precision | I-quantity Recall | I-quantity F1 | I-norp Precision | I-norp Recall | I-norp F1 | I-loc Precision | I-loc Recall | I-loc F1 | B-product Precision | B-product Recall | B-product F1 | I-time Precision | I-time Recall | I-time F1 | B-event Precision | B-event Recall | B-event F1 | I-event Precision | I-event Recall | I-event F1 | I-fac Precision | I-fac Recall | I-fac F1 | B-language Precision | B-language Recall | B-language F1 | I-product Precision | I-product Recall | I-product F1 | I-ordinal Precision | I-ordinal Recall | I-ordinal F1 | I-language Precision | I-language Recall | I-language F1 |
|
169 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|:-----------:|:--------:|:------:|:--------------------:|:-----------------:|:-------------:|:----------------:|:-------------:|:---------:|:----------------:|:-------------:|:---------:|:------------------:|:---------------:|:-----------:|:------------------:|:---------------:|:-----------:|:----------------:|:-------------:|:---------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:-----------------------:|:--------------------:|:----------------:|:-----------------------:|:--------------------:|:----------------:|:---------------:|:------------:|:--------:|:----------------:|:-------------:|:---------:|:--------------------:|:-----------------:|:-------------:|:---------------:|:------------:|:--------:|:--------------------:|:-----------------:|:-------------:|:--------------------:|:-----------------:|:-------------:|:----------------:|:-------------:|:---------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:--------------------:|:-----------------:|:-------------:|
|
170 |
+
| 0.43 | 0.3332 | 1248 | 0.1141 | 0.7842 | 0.8162 | 0.7999 | 0.9680 | 0.9940 | 0.9886 | 0.9913 | 0.8180 | 0.8605 | 0.8387 | 0.8343 | 0.8244 | 0.8294 | 0.8103 | 0.9023 | 0.8538 | 0.8776 | 0.9537 | 0.9141 | 0.9234 | 0.9693 | 0.9458 | 0.8485 | 0.9146 | 0.8803 | 0.9480 | 0.8583 | 0.9009 | 0.8588 | 0.7931 | 0.8246 | 1.0 | 0.0 | 0.0 | 0.3333 | 0.6754 | 0.4464 | 0.8220 | 0.8229 | 0.8224 | 0.8696 | 0.8734 | 0.8715 | 0.8902 | 0.9563 | 0.9221 | 0.9170 | 0.9170 | 0.9170 | 0.825 | 0.7911 | 0.8077 | 0.7884 | 0.8719 | 0.8280 | 0.9129 | 0.9593 | 0.9355 | 0.3367 | 0.1542 | 0.2115 | 0.4216 | 0.6862 | 0.5223 | 0.4031 | 0.325 | 0.3599 | 0.6897 | 0.4149 | 0.5181 | 0.6894 | 0.9125 | 0.7854 | 0.4729 | 0.6128 | 0.5339 | 0.8872 | 0.9077 | 0.8973 | 0.8442 | 0.9559 | 0.8966 | 0.75 | 0.0448 | 0.0845 | 0.5819 | 0.6374 | 0.6084 | 0.2260 | 0.6875 | 0.3402 | 0.7253 | 0.7437 | 0.7344 | 0.6857 | 0.2069 | 0.3179 | 0.5475 | 0.6832 | 0.6078 | 0.4843 | 0.6727 | 0.5632 | 1.0 | 0.025 | 0.0488 | 0.5455 | 0.1695 | 0.2586 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
171 |
+
| 0.105 | 0.6663 | 2496 | 0.0947 | 0.8324 | 0.8524 | 0.8423 | 0.9745 | 0.9920 | 0.9929 | 0.9924 | 0.8393 | 0.8623 | 0.8507 | 0.8746 | 0.8149 | 0.8437 | 0.8787 | 0.8613 | 0.8699 | 0.9319 | 0.9185 | 0.9252 | 0.9546 | 0.9673 | 0.9609 | 0.8904 | 0.9124 | 0.9012 | 0.8901 | 0.9615 | 0.9244 | 0.8396 | 0.9025 | 0.8699 | 0.6 | 0.4 | 0.48 | 0.4565 | 0.5526 | 0.5 | 0.8549 | 0.8488 | 0.8519 | 0.9132 | 0.8534 | 0.8823 | 0.9579 | 0.8952 | 0.9255 | 0.9203 | 0.9585 | 0.9390 | 0.8270 | 0.8185 | 0.8227 | 0.8616 | 0.9192 | 0.8895 | 0.9241 | 0.9738 | 0.9483 | 0.5193 | 0.5654 | 0.5414 | 0.5861 | 0.6682 | 0.6245 | 0.4261 | 0.4688 | 0.4464 | 0.7593 | 0.6805 | 0.7177 | 0.8645 | 0.8367 | 0.8504 | 0.8719 | 0.5396 | 0.6667 | 0.8769 | 0.8769 | 0.8769 | 0.8629 | 0.9485 | 0.9037 | 0.7179 | 0.4179 | 0.5283 | 0.8259 | 0.6081 | 0.7004 | 0.4889 | 0.6875 | 0.5714 | 0.74 | 0.8196 | 0.7778 | 0.7566 | 0.4957 | 0.5990 | 0.7438 | 0.6556 | 0.6969 | 0.6076 | 0.6364 | 0.6217 | 0.5246 | 0.8 | 0.6337 | 0.8489 | 0.6667 | 0.7468 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
172 |
+
| 0.0911 | 0.9995 | 3744 | 0.0930 | 0.8390 | 0.8678 | 0.8531 | 0.9746 | 0.9946 | 0.9902 | 0.9924 | 0.8656 | 0.8358 | 0.8505 | 0.8726 | 0.8452 | 0.8587 | 0.8527 | 0.9116 | 0.8812 | 0.8653 | 0.9684 | 0.9140 | 0.9111 | 0.9855 | 0.9468 | 0.8994 | 0.9176 | 0.9084 | 0.9277 | 0.9374 | 0.9325 | 0.8923 | 0.8696 | 0.8808 | 0.5667 | 0.7556 | 0.6476 | 0.4024 | 0.5789 | 0.4748 | 0.8818 | 0.8469 | 0.8640 | 0.8967 | 0.8967 | 0.8967 | 0.9327 | 0.9083 | 0.9204 | 0.8680 | 0.9925 | 0.9261 | 0.8854 | 0.7671 | 0.8220 | 0.8770 | 0.9331 | 0.9042 | 0.9266 | 0.9724 | 0.9489 | 0.4681 | 0.6168 | 0.5323 | 0.5297 | 0.6637 | 0.5892 | 0.5475 | 0.6125 | 0.5782 | 0.72 | 0.7469 | 0.7332 | 0.7570 | 0.8717 | 0.8103 | 0.8699 | 0.6524 | 0.7456 | 0.8188 | 0.8692 | 0.8433 | 0.8248 | 0.9522 | 0.8840 | 0.6364 | 0.5224 | 0.5738 | 0.8806 | 0.6484 | 0.7468 | 0.5138 | 0.5833 | 0.5463 | 0.7733 | 0.8418 | 0.8061 | 0.7319 | 0.4353 | 0.5459 | 0.7147 | 0.6556 | 0.6839 | 0.6151 | 0.6218 | 0.6184 | 0.7429 | 0.65 | 0.6933 | 0.7669 | 0.7062 | 0.7353 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
173 |
+
| 0.0687 | 1.3326 | 4992 | 0.0859 | 0.8593 | 0.8739 | 0.8665 | 0.9773 | 0.9938 | 0.9923 | 0.9930 | 0.8537 | 0.8959 | 0.8742 | 0.8901 | 0.8505 | 0.8699 | 0.8793 | 0.8914 | 0.8853 | 0.9347 | 0.9473 | 0.9410 | 0.9343 | 0.9822 | 0.9577 | 0.9099 | 0.9154 | 0.9126 | 0.9510 | 0.9254 | 0.9380 | 0.8698 | 0.8816 | 0.8757 | 0.6383 | 0.6667 | 0.6522 | 0.6562 | 0.5526 | 0.6 | 0.8763 | 0.8787 | 0.8775 | 0.8960 | 0.9126 | 0.9042 | 0.9298 | 0.9258 | 0.9278 | 0.8931 | 0.9774 | 0.9333 | 0.8322 | 0.8151 | 0.8235 | 0.9126 | 0.9304 | 0.9214 | 0.9372 | 0.9753 | 0.9558 | 0.5642 | 0.5748 | 0.5694 | 0.5895 | 0.6614 | 0.6234 | 0.4837 | 0.5563 | 0.5174 | 0.7592 | 0.7718 | 0.7654 | 0.7927 | 0.8805 | 0.8343 | 0.7432 | 0.75 | 0.7466 | 0.8551 | 0.9077 | 0.8806 | 0.8961 | 0.9191 | 0.9074 | 0.75 | 0.4925 | 0.5946 | 0.7807 | 0.7692 | 0.7749 | 0.5285 | 0.6771 | 0.5936 | 0.7326 | 0.8671 | 0.7942 | 0.7314 | 0.5517 | 0.6290 | 0.7697 | 0.6722 | 0.7176 | 0.6778 | 0.6655 | 0.6716 | 0.7368 | 0.7 | 0.7179 | 0.8531 | 0.6893 | 0.7625 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
174 |
+
| 0.0638 | 1.6658 | 6240 | 0.0855 | 0.8512 | 0.8825 | 0.8665 | 0.9769 | 0.9947 | 0.9912 | 0.9930 | 0.8476 | 0.8985 | 0.8723 | 0.8660 | 0.8737 | 0.8698 | 0.8713 | 0.8919 | 0.8815 | 0.9208 | 0.9577 | 0.9389 | 0.9413 | 0.9786 | 0.9596 | 0.9022 | 0.9258 | 0.9139 | 0.9359 | 0.9535 | 0.9446 | 0.9280 | 0.8891 | 0.9081 | 0.5818 | 0.7111 | 0.64 | 0.5780 | 0.5526 | 0.5650 | 0.8955 | 0.8685 | 0.8818 | 0.9273 | 0.8887 | 0.9076 | 0.9185 | 0.9345 | 0.9264 | 0.9231 | 0.9509 | 0.9368 | 0.8530 | 0.8151 | 0.8336 | 0.9187 | 0.9443 | 0.9313 | 0.9579 | 0.9593 | 0.9586 | 0.4462 | 0.6776 | 0.5380 | 0.4534 | 0.7472 | 0.5644 | 0.4554 | 0.6375 | 0.5312 | 0.7578 | 0.8050 | 0.7807 | 0.7677 | 0.8863 | 0.8227 | 0.8517 | 0.6829 | 0.7580 | 0.8369 | 0.9077 | 0.8708 | 0.8854 | 0.9375 | 0.9107 | 0.8919 | 0.4925 | 0.6346 | 0.8918 | 0.6337 | 0.7409 | 0.5349 | 0.7188 | 0.6133 | 0.7778 | 0.8418 | 0.8085 | 0.7590 | 0.5431 | 0.6332 | 0.7812 | 0.6198 | 0.6912 | 0.5287 | 0.6691 | 0.5907 | 0.8214 | 0.575 | 0.6765 | 0.8447 | 0.7684 | 0.8047 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
175 |
+
| 0.059 | 1.9989 | 7488 | 0.0828 | 0.8576 | 0.8837 | 0.8705 | 0.9778 | 0.9945 | 0.9919 | 0.9932 | 0.8352 | 0.9038 | 0.8682 | 0.8651 | 0.8749 | 0.8699 | 0.8784 | 0.8875 | 0.8829 | 0.9139 | 0.9589 | 0.9359 | 0.9361 | 0.9826 | 0.9588 | 0.8975 | 0.9311 | 0.9140 | 0.9323 | 0.9481 | 0.9401 | 0.8806 | 0.9175 | 0.8987 | 0.6 | 0.6667 | 0.6316 | 0.576 | 0.6316 | 0.6025 | 0.8991 | 0.8673 | 0.8829 | 0.9162 | 0.9005 | 0.9083 | 0.9330 | 0.9127 | 0.9227 | 0.8966 | 0.9811 | 0.9369 | 0.7907 | 0.8151 | 0.8027 | 0.8939 | 0.9387 | 0.9158 | 0.9448 | 0.9709 | 0.9577 | 0.5774 | 0.6449 | 0.6093 | 0.6834 | 0.6772 | 0.6803 | 0.5024 | 0.6438 | 0.5644 | 0.7870 | 0.7510 | 0.7686 | 0.7655 | 0.8659 | 0.8126 | 0.8710 | 0.6585 | 0.75 | 0.8992 | 0.8923 | 0.8958 | 0.8969 | 0.9596 | 0.9272 | 0.8571 | 0.5373 | 0.6606 | 0.8517 | 0.6520 | 0.7386 | 0.5610 | 0.7188 | 0.6301 | 0.8185 | 0.8133 | 0.8159 | 0.7396 | 0.6121 | 0.6698 | 0.8033 | 0.6749 | 0.7335 | 0.5574 | 0.7418 | 0.6365 | 0.9259 | 0.625 | 0.7463 | 0.8333 | 0.7627 | 0.7965 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
176 |
+
| 0.0469 | 2.3321 | 8736 | 0.0843 | 0.8674 | 0.8854 | 0.8763 | 0.9785 | 0.9944 | 0.9921 | 0.9932 | 0.8763 | 0.8817 | 0.8790 | 0.8636 | 0.8826 | 0.8730 | 0.8583 | 0.9116 | 0.8842 | 0.9310 | 0.9556 | 0.9432 | 0.9548 | 0.9818 | 0.9681 | 0.8977 | 0.9266 | 0.9119 | 0.9468 | 0.9398 | 0.9433 | 0.9367 | 0.8876 | 0.9115 | 0.6 | 0.8 | 0.6857 | 0.6083 | 0.6404 | 0.6239 | 0.9025 | 0.8724 | 0.8872 | 0.9201 | 0.9043 | 0.9121 | 0.9361 | 0.8952 | 0.9152 | 0.8680 | 0.9925 | 0.9261 | 0.8339 | 0.8253 | 0.8296 | 0.9066 | 0.9192 | 0.9129 | 0.9385 | 0.9767 | 0.9573 | 0.5744 | 0.6495 | 0.6096 | 0.6268 | 0.6975 | 0.6603 | 0.4928 | 0.6375 | 0.5559 | 0.8 | 0.7801 | 0.7899 | 0.7943 | 0.9009 | 0.8443 | 0.7980 | 0.7226 | 0.7584 | 0.8992 | 0.8923 | 0.8958 | 0.8859 | 0.9706 | 0.9263 | 0.8182 | 0.5373 | 0.6486 | 0.8016 | 0.7399 | 0.7695 | 0.5185 | 0.7292 | 0.6061 | 0.7604 | 0.8639 | 0.8089 | 0.7273 | 0.6207 | 0.6698 | 0.7753 | 0.6749 | 0.7216 | 0.6168 | 0.72 | 0.6644 | 0.9259 | 0.625 | 0.7463 | 0.8114 | 0.8023 | 0.8068 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
177 |
+
| 0.0439 | 2.6652 | 9984 | 0.0868 | 0.8635 | 0.8846 | 0.8739 | 0.9781 | 0.9953 | 0.9914 | 0.9934 | 0.8517 | 0.8923 | 0.8716 | 0.8660 | 0.8778 | 0.8719 | 0.8604 | 0.9097 | 0.8844 | 0.9214 | 0.9623 | 0.9414 | 0.9377 | 0.9842 | 0.9604 | 0.8797 | 0.9258 | 0.9022 | 0.9402 | 0.9323 | 0.9362 | 0.8920 | 0.9040 | 0.8980 | 0.6066 | 0.8222 | 0.6981 | 0.4802 | 0.7456 | 0.5842 | 0.9044 | 0.8693 | 0.8865 | 0.9143 | 0.9122 | 0.9133 | 0.9321 | 0.8996 | 0.9156 | 0.8763 | 0.9887 | 0.9291 | 0.8385 | 0.8356 | 0.8370 | 0.9046 | 0.9248 | 0.9146 | 0.9321 | 0.9782 | 0.9546 | 0.6207 | 0.5888 | 0.6043 | 0.6463 | 0.6930 | 0.6688 | 0.5575 | 0.6062 | 0.5808 | 0.7787 | 0.8174 | 0.7976 | 0.7440 | 0.9067 | 0.8173 | 0.7508 | 0.7530 | 0.7519 | 0.8712 | 0.8846 | 0.8779 | 0.88 | 0.9706 | 0.9231 | 0.6792 | 0.5373 | 0.6000 | 0.7948 | 0.7802 | 0.7874 | 0.5378 | 0.6667 | 0.5953 | 0.7744 | 0.8797 | 0.8237 | 0.7366 | 0.5905 | 0.6555 | 0.7912 | 0.6474 | 0.7121 | 0.6809 | 0.6982 | 0.6894 | 0.6744 | 0.725 | 0.6988 | 0.7967 | 0.8192 | 0.8078 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
178 |
+
| 0.0435 | 2.9984 | 11232 | 0.0851 | 0.8634 | 0.8879 | 0.8755 | 0.9783 | 0.9952 | 0.9917 | 0.9934 | 0.8585 | 0.8994 | 0.8784 | 0.8627 | 0.8796 | 0.8711 | 0.8742 | 0.9023 | 0.8880 | 0.9204 | 0.9596 | 0.9396 | 0.9452 | 0.9818 | 0.9632 | 0.8898 | 0.9311 | 0.9100 | 0.9471 | 0.9395 | 0.9433 | 0.9119 | 0.8846 | 0.8980 | 0.5909 | 0.8667 | 0.7027 | 0.5170 | 0.7982 | 0.6276 | 0.9061 | 0.8716 | 0.8885 | 0.9212 | 0.9075 | 0.9143 | 0.9321 | 0.8996 | 0.9156 | 0.8822 | 0.9887 | 0.9324 | 0.8356 | 0.8356 | 0.8356 | 0.9051 | 0.9304 | 0.9176 | 0.9372 | 0.9753 | 0.9558 | 0.5354 | 0.6355 | 0.5812 | 0.5849 | 0.6998 | 0.6372 | 0.4833 | 0.6312 | 0.5474 | 0.7782 | 0.8299 | 0.8032 | 0.7683 | 0.8892 | 0.8243 | 0.8206 | 0.7530 | 0.7854 | 0.8731 | 0.9 | 0.8864 | 0.8889 | 0.9706 | 0.9279 | 0.6792 | 0.5373 | 0.6000 | 0.7721 | 0.7692 | 0.7706 | 0.5447 | 0.6979 | 0.6119 | 0.7694 | 0.8766 | 0.8195 | 0.7308 | 0.5733 | 0.6425 | 0.7951 | 0.6198 | 0.6966 | 0.6463 | 0.6909 | 0.6678 | 0.8387 | 0.65 | 0.7324 | 0.8480 | 0.8192 | 0.8333 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 |
|
179 |
+
|
180 |
+
|
181 |
+
### Framework versions
|
182 |
+
|
183 |
+
- Transformers 4.42.4
|
184 |
+
- Pytorch 2.3.1+cu121
|
185 |
+
- Datasets 2.21.0
|
186 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"finetuning_task": "ner",
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "O",
|
16 |
+
"1": "B-CARDINAL",
|
17 |
+
"2": "B-DATE",
|
18 |
+
"3": "I-DATE",
|
19 |
+
"4": "B-PERSON",
|
20 |
+
"5": "I-PERSON",
|
21 |
+
"6": "B-NORP",
|
22 |
+
"7": "B-GPE",
|
23 |
+
"8": "I-GPE",
|
24 |
+
"9": "B-LAW",
|
25 |
+
"10": "I-LAW",
|
26 |
+
"11": "B-ORG",
|
27 |
+
"12": "I-ORG",
|
28 |
+
"13": "B-PERCENT",
|
29 |
+
"14": "I-PERCENT",
|
30 |
+
"15": "B-ORDINAL",
|
31 |
+
"16": "B-MONEY",
|
32 |
+
"17": "I-MONEY",
|
33 |
+
"18": "B-WORK_OF_ART",
|
34 |
+
"19": "I-WORK_OF_ART",
|
35 |
+
"20": "B-FAC",
|
36 |
+
"21": "B-TIME",
|
37 |
+
"22": "I-CARDINAL",
|
38 |
+
"23": "B-LOC",
|
39 |
+
"24": "B-QUANTITY",
|
40 |
+
"25": "I-QUANTITY",
|
41 |
+
"26": "I-NORP",
|
42 |
+
"27": "I-LOC",
|
43 |
+
"28": "B-PRODUCT",
|
44 |
+
"29": "I-TIME",
|
45 |
+
"30": "B-EVENT",
|
46 |
+
"31": "I-EVENT",
|
47 |
+
"32": "I-FAC",
|
48 |
+
"33": "B-LANGUAGE",
|
49 |
+
"34": "I-PRODUCT",
|
50 |
+
"35": "I-ORDINAL",
|
51 |
+
"36": "I-LANGUAGE"
|
52 |
+
},
|
53 |
+
"initializer_range": 0.02,
|
54 |
+
"intermediate_size": 3072,
|
55 |
+
"label2id": {
|
56 |
+
"B-CARDINAL": 1,
|
57 |
+
"B-DATE": 2,
|
58 |
+
"B-EVENT": 30,
|
59 |
+
"B-FAC": 20,
|
60 |
+
"B-GPE": 7,
|
61 |
+
"B-LANGUAGE": 33,
|
62 |
+
"B-LAW": 9,
|
63 |
+
"B-LOC": 23,
|
64 |
+
"B-MONEY": 16,
|
65 |
+
"B-NORP": 6,
|
66 |
+
"B-ORDINAL": 15,
|
67 |
+
"B-ORG": 11,
|
68 |
+
"B-PERCENT": 13,
|
69 |
+
"B-PERSON": 4,
|
70 |
+
"B-PRODUCT": 28,
|
71 |
+
"B-QUANTITY": 24,
|
72 |
+
"B-TIME": 21,
|
73 |
+
"B-WORK_OF_ART": 18,
|
74 |
+
"I-CARDINAL": 22,
|
75 |
+
"I-DATE": 3,
|
76 |
+
"I-EVENT": 31,
|
77 |
+
"I-FAC": 32,
|
78 |
+
"I-GPE": 8,
|
79 |
+
"I-LANGUAGE": 36,
|
80 |
+
"I-LAW": 10,
|
81 |
+
"I-LOC": 27,
|
82 |
+
"I-MONEY": 17,
|
83 |
+
"I-NORP": 26,
|
84 |
+
"I-ORDINAL": 35,
|
85 |
+
"I-ORG": 12,
|
86 |
+
"I-PERCENT": 14,
|
87 |
+
"I-PERSON": 5,
|
88 |
+
"I-PRODUCT": 34,
|
89 |
+
"I-QUANTITY": 25,
|
90 |
+
"I-TIME": 29,
|
91 |
+
"I-WORK_OF_ART": 19,
|
92 |
+
"O": 0
|
93 |
+
},
|
94 |
+
"layer_norm_eps": 1e-05,
|
95 |
+
"max_position_embeddings": 514,
|
96 |
+
"model_type": "xlm-roberta",
|
97 |
+
"num_attention_heads": 12,
|
98 |
+
"num_hidden_layers": 12,
|
99 |
+
"output_past": true,
|
100 |
+
"pad_token_id": 1,
|
101 |
+
"position_embedding_type": "absolute",
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.42.4",
|
104 |
+
"type_vocab_size": 1,
|
105 |
+
"use_cache": true,
|
106 |
+
"vocab_size": 250002
|
107 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b659664b20030f24e079c0d6b39e71c4fdef4160c1edfabeb08ddd337fcb9a04
|
3 |
+
size 1109950092
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1e6cc9870876ebe4a3af0b2232c45771fb9f367cd5ec5abd377cde7b04ac251
|
3 |
+
size 5112
|