--- license: apache-2.0 language: - en library_name: diffusers pipeline_tag: text-to-image ---
## Capabilities 🚅 🔥 Our CSGO achieves **image-driven style transfer, text-driven stylized synthesis, and text editing-driven stylized synthesis**. 🔥 For more results, visit our homepage 🔥
## Getting Started 🏁 ### 1. Clone the code and prepare the environment ```bash git clone https://github.com/instantX-research/CSGO cd CSGO # create env using conda conda create -n CSGO python=3.9 conda activate CSGO # install dependencies with pip # for Linux and Windows users pip install -r requirements.txt ``` ### 2. Download pretrained weights(coming soon) The easiest way to download the pretrained weights is from HuggingFace: ```bash # first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage git lfs install # clone and move the weights git clone https://huggingface.co/InstantX/CSGO ``` Our method is fully compatible with [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), [VAE](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix), [ControlNet](https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic), and [Image Encoder](https://huggingface.co/h94/IP-Adapter/tree/main/sdxl_models/image_encoder). Please download them and place them in the ./base_models folder. tips:If you expect to load Controlnet directly using ControlNetPipeline as in CSGO, do the following: ```bash git clone https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic mv TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v2_fp16.safetensors TTPLanet_SDXL_Controlnet_Tile_Realistic/diffusion_pytorch_model.safetensors ``` ### 3. Inference 🚀 ```python import torch from ip_adapter.utils import resize_content import numpy as np from ip_adapter.utils import BLOCKS as BLOCKS from ip_adapter.utils import controlnet_BLOCKS as controlnet_BLOCKS from PIL import Image from diffusers import ( AutoencoderKL, ControlNetModel, StableDiffusionXLControlNetPipeline, ) from ip_adapter import CSGO device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") base_model_path = "./base_models/stable-diffusion-xl-base-1.0" image_encoder_path = "./base_models/IP-Adapter/sdxl_models/image_encoder" csgo_ckpt = "./CSGO/csgo.bin" pretrained_vae_name_or_path ='./base_models/sdxl-vae-fp16-fix' controlnet_path = "./base_models/TTPLanet_SDXL_Controlnet_Tile_Realistic" weight_dtype = torch.float16 vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16,use_safetensors=True) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16, add_watermarker=False, vae=vae ) pipe.enable_vae_tiling() target_content_blocks = BLOCKS['content'] target_style_blocks = BLOCKS['style'] controlnet_target_content_blocks = controlnet_BLOCKS['content'] controlnet_target_style_blocks = controlnet_BLOCKS['style'] csgo = CSGO(pipe, image_encoder_path, csgo_ckpt, device, num_content_tokens=4,num_style_tokens=32, target_content_blocks=target_content_blocks, target_style_blocks=target_style_blocks,controlnet_adapter=True, controlnet_target_content_blocks=controlnet_target_content_blocks, controlnet_target_style_blocks=controlnet_target_style_blocks, content_model_resampler=True, style_model_resampler=True, ) style_name = 'img_1.png' content_name = 'img_0.png' style_image = Image.open("../assets/{}".format(style_name)).convert('RGB') content_image = Image.open('../assets/{}'.format(content_name)).convert('RGB') caption ='a small house with a sheep statue on top of it' num_sample=4 #image-driven style transfer images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image, prompt=caption, negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", content_scale=1.0, style_scale=1.0, guidance_scale=10, num_images_per_prompt=num_sample, num_samples=1, num_inference_steps=50, seed=42, image=content_image.convert('RGB'), controlnet_conditioning_scale=0.6, ) #text editing-driven stylized synthesis caption='a small house' images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image, prompt=caption, negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", content_scale=1.0, style_scale=1.0, guidance_scale=10, num_images_per_prompt=num_sample, num_samples=1, num_inference_steps=50, seed=42, image=content_image.convert('RGB'), controlnet_conditioning_scale=0.4, ) #text-driven stylized synthesis caption='a cat' #If the content image still interferes with the generated results, set the content image to an empty image. # content_image =Image.fromarray(np.zeros((content_image.size[0],content_image.size[1], 3), dtype=np.uint8)).convert('RGB') images = csgo.generate(pil_content_image= content_image, pil_style_image=style_image, prompt=caption, negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", content_scale=1.0, style_scale=1.0, guidance_scale=10, num_images_per_prompt=num_sample, num_samples=1, num_inference_steps=50, seed=42, image=content_image.convert('RGB'), controlnet_conditioning_scale=0.01, ) ``` ## Demos
🔥 For more results, visit our homepage 🔥
### Cycle Translation
### Text-Driven Style Synthesis
### Text Editing-Driven Style Synthesis
## Star History [![Star History Chart](https://api.star-history.com/svg?repos=instantX-research/CSGO&type=Date)](https://star-history.com/#instantX-research/CSGO&Date) ## Acknowledgements This project is developed by InstantX Team, all copyright reserved. ## Citation 💖 If you find CSGO useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX: ```bibtex @article{xing2024csgo, title={CSGO: Content-Style Composition in Text-to-Image Generation}, author={Peng Xing and Haofan Wang and Yanpeng Sun and Qixun Wang and Xu Bai and Hao Ai and Renyuan Huang and Zechao Li}, year={2024}, journal = {arXiv 2408.16766}, } ```