# SD3 Controlnet | control image | weight=0.0 | weight=0.3 | weight=0.5 | weight=0.7 | weight=0.9 | |:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:| | | | | | | | # Install Diffusers-SD3-Controlnet The current [diffusers](https://github.com/instantX-research/diffusers_sd3_control.git) have not been merged into the official code yet. ```cmd git clone -b sd3_control https://github.com/instantX-research/diffusers_sd3_control.git cd diffusers_sd3_control pip install -e . ``` # Demo ```python import torch from diffusers import StableDiffusion3ControlNetPipeline from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel from diffusers.utils import load_image # load pipeline controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny") pipe = StableDiffusion3ControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet ) pipe.to("cuda", torch.float16) # config control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image' n_prompt = 'NSFW, nude, naked, porn, ugly' image = pipe( prompt, negative_prompt=n_prompt, control_image=canny_image, controlnet_conditioning_scale=0.5, ).images[0] image.save('image.jpg') ``` ## Limitation Due to the fact that only 1024*1024 pixel resolution was used during the training phase, the inference performs best at this size, with other sizes yielding suboptimal results. We will initiate multi-resolution training in the future, and at that time, we will open-source the new weights.