徐俊德
commited on
Commit
•
c525dff
1
Parent(s):
53e5e8d
init
Browse files- config.json +57 -0
- configuration_progen.py +89 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +346 -0
- modeling_InstructProGen.py +700 -0
- special_tokens_map.json +9 -0
- structure.py +287 -0
- tokenization_iPLM.py +80 -0
- tokenizer.json +95 -0
- tokenizer_config.json +11 -0
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"ProGenForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_progen.ProGenConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_InstructProGen.ProGenForCausalLM"
|
10 |
+
},
|
11 |
+
"attn_pdrop": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"embd_pdrop": 0.0,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"layer_norm_epsilon": 1e-05,
|
18 |
+
"model_type": "progen",
|
19 |
+
"n_ctx": 2048,
|
20 |
+
"n_embd": 4096,
|
21 |
+
"n_head": 16,
|
22 |
+
"n_inner": null,
|
23 |
+
"n_layer": 32,
|
24 |
+
"n_positions": 1024,
|
25 |
+
"resid_pdrop": 0.0,
|
26 |
+
"rotary_dim": 64,
|
27 |
+
"scale_attn_weights": true,
|
28 |
+
"structure": {
|
29 |
+
"embedding_keys": [
|
30 |
+
"mpnn_emb"
|
31 |
+
],
|
32 |
+
"max_seqlen": 512,
|
33 |
+
"n_queries": 256,
|
34 |
+
"num_heads": 16,
|
35 |
+
"output_dim": 4096,
|
36 |
+
"structure_emb_path_prefix": "./structure_embeddings",
|
37 |
+
"width": 1152
|
38 |
+
},
|
39 |
+
"summary_activation": null,
|
40 |
+
"summary_first_dropout": 0.1,
|
41 |
+
"summary_proj_to_labels": true,
|
42 |
+
"summary_type": "cls_index",
|
43 |
+
"summary_use_proj": true,
|
44 |
+
"task_specific_params": {
|
45 |
+
"text-generation": {
|
46 |
+
"do_sample": true,
|
47 |
+
"max_length": 50,
|
48 |
+
"temperature": 1.0
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"tie_word_embeddings": false,
|
52 |
+
"tokenizer_type": "iPLMTokenizer",
|
53 |
+
"torch_dtype": "float16",
|
54 |
+
"transformers_version": "4.37.2",
|
55 |
+
"use_cache": true,
|
56 |
+
"vocab_size": 30
|
57 |
+
}
|
configuration_progen.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Modified configuration implementation based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/gptj/configuration_gptj.py
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class ProGenConfig(PretrainedConfig):
|
25 |
+
model_type = "progen"
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
vocab_size=50400,
|
30 |
+
n_positions=2048,
|
31 |
+
n_ctx=2048,
|
32 |
+
n_embd=4096,
|
33 |
+
n_layer=28,
|
34 |
+
n_head=16,
|
35 |
+
rotary_dim=64,
|
36 |
+
n_inner=None,
|
37 |
+
activation_function="gelu_new",
|
38 |
+
resid_pdrop=0.0,
|
39 |
+
embd_pdrop=0.0,
|
40 |
+
attn_pdrop=0.0,
|
41 |
+
layer_norm_epsilon=1e-5,
|
42 |
+
initializer_range=0.02,
|
43 |
+
scale_attn_weights=True,
|
44 |
+
gradient_checkpointing=False,
|
45 |
+
use_cache=True,
|
46 |
+
bos_token_id=50256,
|
47 |
+
eos_token_id=50256,
|
48 |
+
tie_word_embeddings=False,
|
49 |
+
**kwargs
|
50 |
+
):
|
51 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
52 |
+
|
53 |
+
self.vocab_size = vocab_size
|
54 |
+
self.n_ctx = n_ctx
|
55 |
+
self.n_positions = n_positions
|
56 |
+
self.n_embd = n_embd
|
57 |
+
self.n_layer = n_layer
|
58 |
+
self.n_head = n_head
|
59 |
+
self.n_inner = n_inner
|
60 |
+
self.rotary_dim = rotary_dim
|
61 |
+
self.activation_function = activation_function
|
62 |
+
self.resid_pdrop = resid_pdrop
|
63 |
+
self.embd_pdrop = embd_pdrop
|
64 |
+
self.attn_pdrop = attn_pdrop
|
65 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
66 |
+
self.initializer_range = initializer_range
|
67 |
+
self.gradient_checkpointing = gradient_checkpointing
|
68 |
+
self.scale_attn_weights = scale_attn_weights
|
69 |
+
self.use_cache = use_cache
|
70 |
+
|
71 |
+
self.bos_token_id = bos_token_id
|
72 |
+
self.eos_token_id = eos_token_id
|
73 |
+
self.tie_word_embeddings = tie_word_embeddings
|
74 |
+
|
75 |
+
@property
|
76 |
+
def max_position_embeddings(self):
|
77 |
+
return self.n_positions
|
78 |
+
|
79 |
+
@property
|
80 |
+
def hidden_size(self):
|
81 |
+
return self.n_embd
|
82 |
+
|
83 |
+
@property
|
84 |
+
def num_attention_heads(self):
|
85 |
+
return self.n_head
|
86 |
+
|
87 |
+
@property
|
88 |
+
def num_hidden_layers(self):
|
89 |
+
return self.n_layer
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.2"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aaf74230b98697cd267b2135f00c9d9a0badaceee5d53bc9a68f790b036310a
|
3 |
+
size 4980651258
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2de1bff26093acaa641f8b61c061d96acf090a4af47951bd768432a108326f37
|
3 |
+
size 4979372896
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:670f0b393f8a9f8560b40884120fa7fa09a09d46eda2f61fc30ecd8fbb1c1b17
|
3 |
+
size 3148588658
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13079216252.0
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.bias": "model-00003-of-00003.safetensors",
|
7 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
8 |
+
"transformer.h.0.attn.bias": "model-00001-of-00003.safetensors",
|
9 |
+
"transformer.h.0.attn.masked_bias": "model-00001-of-00003.safetensors",
|
10 |
+
"transformer.h.0.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"transformer.h.0.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"transformer.h.0.ln_1.bias": "model-00001-of-00003.safetensors",
|
13 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"transformer.h.0.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
15 |
+
"transformer.h.0.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"transformer.h.0.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
17 |
+
"transformer.h.0.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"transformer.h.1.attn.bias": "model-00001-of-00003.safetensors",
|
19 |
+
"transformer.h.1.attn.masked_bias": "model-00001-of-00003.safetensors",
|
20 |
+
"transformer.h.1.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"transformer.h.1.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"transformer.h.1.ln_1.bias": "model-00001-of-00003.safetensors",
|
23 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"transformer.h.1.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
25 |
+
"transformer.h.1.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"transformer.h.1.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
27 |
+
"transformer.h.1.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"transformer.h.10.attn.bias": "model-00001-of-00003.safetensors",
|
29 |
+
"transformer.h.10.attn.masked_bias": "model-00001-of-00003.safetensors",
|
30 |
+
"transformer.h.10.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"transformer.h.10.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"transformer.h.10.ln_1.bias": "model-00001-of-00003.safetensors",
|
33 |
+
"transformer.h.10.ln_1.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"transformer.h.10.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
35 |
+
"transformer.h.10.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"transformer.h.10.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
37 |
+
"transformer.h.10.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"transformer.h.11.attn.bias": "model-00001-of-00003.safetensors",
|
39 |
+
"transformer.h.11.attn.masked_bias": "model-00001-of-00003.safetensors",
|
40 |
+
"transformer.h.11.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"transformer.h.11.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"transformer.h.11.ln_1.bias": "model-00001-of-00003.safetensors",
|
43 |
+
"transformer.h.11.ln_1.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"transformer.h.11.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
45 |
+
"transformer.h.11.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"transformer.h.11.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
47 |
+
"transformer.h.11.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"transformer.h.12.attn.bias": "model-00001-of-00003.safetensors",
|
49 |
+
"transformer.h.12.attn.masked_bias": "model-00001-of-00003.safetensors",
|
50 |
+
"transformer.h.12.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
51 |
+
"transformer.h.12.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
52 |
+
"transformer.h.12.ln_1.bias": "model-00001-of-00003.safetensors",
|
53 |
+
"transformer.h.12.ln_1.weight": "model-00001-of-00003.safetensors",
|
54 |
+
"transformer.h.12.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
55 |
+
"transformer.h.12.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"transformer.h.12.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
57 |
+
"transformer.h.12.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"transformer.h.13.attn.bias": "model-00002-of-00003.safetensors",
|
59 |
+
"transformer.h.13.attn.masked_bias": "model-00002-of-00003.safetensors",
|
60 |
+
"transformer.h.13.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"transformer.h.13.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"transformer.h.13.ln_1.bias": "model-00002-of-00003.safetensors",
|
63 |
+
"transformer.h.13.ln_1.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"transformer.h.13.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
65 |
+
"transformer.h.13.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"transformer.h.13.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
67 |
+
"transformer.h.13.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"transformer.h.14.attn.bias": "model-00002-of-00003.safetensors",
|
69 |
+
"transformer.h.14.attn.masked_bias": "model-00002-of-00003.safetensors",
|
70 |
+
"transformer.h.14.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"transformer.h.14.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"transformer.h.14.ln_1.bias": "model-00002-of-00003.safetensors",
|
73 |
+
"transformer.h.14.ln_1.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"transformer.h.14.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
75 |
+
"transformer.h.14.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"transformer.h.14.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
77 |
+
"transformer.h.14.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"transformer.h.15.attn.bias": "model-00002-of-00003.safetensors",
|
79 |
+
"transformer.h.15.attn.masked_bias": "model-00002-of-00003.safetensors",
|
80 |
+
"transformer.h.15.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"transformer.h.15.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"transformer.h.15.ln_1.bias": "model-00002-of-00003.safetensors",
|
83 |
+
"transformer.h.15.ln_1.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"transformer.h.15.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
85 |
+
"transformer.h.15.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"transformer.h.15.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
87 |
+
"transformer.h.15.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"transformer.h.16.attn.bias": "model-00002-of-00003.safetensors",
|
89 |
+
"transformer.h.16.attn.masked_bias": "model-00002-of-00003.safetensors",
|
90 |
+
"transformer.h.16.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"transformer.h.16.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"transformer.h.16.ln_1.bias": "model-00002-of-00003.safetensors",
|
93 |
+
"transformer.h.16.ln_1.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"transformer.h.16.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
95 |
+
"transformer.h.16.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"transformer.h.16.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
97 |
+
"transformer.h.16.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"transformer.h.17.attn.bias": "model-00002-of-00003.safetensors",
|
99 |
+
"transformer.h.17.attn.masked_bias": "model-00002-of-00003.safetensors",
|
100 |
+
"transformer.h.17.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"transformer.h.17.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"transformer.h.17.ln_1.bias": "model-00002-of-00003.safetensors",
|
103 |
+
"transformer.h.17.ln_1.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"transformer.h.17.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
105 |
+
"transformer.h.17.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"transformer.h.17.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
107 |
+
"transformer.h.17.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"transformer.h.18.attn.bias": "model-00002-of-00003.safetensors",
|
109 |
+
"transformer.h.18.attn.masked_bias": "model-00002-of-00003.safetensors",
|
110 |
+
"transformer.h.18.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"transformer.h.18.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"transformer.h.18.ln_1.bias": "model-00002-of-00003.safetensors",
|
113 |
+
"transformer.h.18.ln_1.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"transformer.h.18.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
115 |
+
"transformer.h.18.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"transformer.h.18.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
117 |
+
"transformer.h.18.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"transformer.h.19.attn.bias": "model-00002-of-00003.safetensors",
|
119 |
+
"transformer.h.19.attn.masked_bias": "model-00002-of-00003.safetensors",
|
120 |
+
"transformer.h.19.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"transformer.h.19.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"transformer.h.19.ln_1.bias": "model-00002-of-00003.safetensors",
|
123 |
+
"transformer.h.19.ln_1.weight": "model-00002-of-00003.safetensors",
|
124 |
+
"transformer.h.19.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
125 |
+
"transformer.h.19.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"transformer.h.19.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
127 |
+
"transformer.h.19.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"transformer.h.2.attn.bias": "model-00001-of-00003.safetensors",
|
129 |
+
"transformer.h.2.attn.masked_bias": "model-00001-of-00003.safetensors",
|
130 |
+
"transformer.h.2.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
131 |
+
"transformer.h.2.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
132 |
+
"transformer.h.2.ln_1.bias": "model-00001-of-00003.safetensors",
|
133 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00003.safetensors",
|
134 |
+
"transformer.h.2.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
135 |
+
"transformer.h.2.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
136 |
+
"transformer.h.2.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
137 |
+
"transformer.h.2.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
138 |
+
"transformer.h.20.attn.bias": "model-00002-of-00003.safetensors",
|
139 |
+
"transformer.h.20.attn.masked_bias": "model-00002-of-00003.safetensors",
|
140 |
+
"transformer.h.20.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"transformer.h.20.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"transformer.h.20.ln_1.bias": "model-00002-of-00003.safetensors",
|
143 |
+
"transformer.h.20.ln_1.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"transformer.h.20.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
145 |
+
"transformer.h.20.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"transformer.h.20.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
147 |
+
"transformer.h.20.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"transformer.h.21.attn.bias": "model-00002-of-00003.safetensors",
|
149 |
+
"transformer.h.21.attn.masked_bias": "model-00002-of-00003.safetensors",
|
150 |
+
"transformer.h.21.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"transformer.h.21.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"transformer.h.21.ln_1.bias": "model-00002-of-00003.safetensors",
|
153 |
+
"transformer.h.21.ln_1.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"transformer.h.21.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
155 |
+
"transformer.h.21.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"transformer.h.21.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
157 |
+
"transformer.h.21.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"transformer.h.22.attn.bias": "model-00002-of-00003.safetensors",
|
159 |
+
"transformer.h.22.attn.masked_bias": "model-00002-of-00003.safetensors",
|
160 |
+
"transformer.h.22.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"transformer.h.22.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"transformer.h.22.ln_1.bias": "model-00002-of-00003.safetensors",
|
163 |
+
"transformer.h.22.ln_1.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"transformer.h.22.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
165 |
+
"transformer.h.22.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"transformer.h.22.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
167 |
+
"transformer.h.22.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"transformer.h.23.attn.bias": "model-00002-of-00003.safetensors",
|
169 |
+
"transformer.h.23.attn.masked_bias": "model-00002-of-00003.safetensors",
|
170 |
+
"transformer.h.23.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"transformer.h.23.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
172 |
+
"transformer.h.23.ln_1.bias": "model-00002-of-00003.safetensors",
|
173 |
+
"transformer.h.23.ln_1.weight": "model-00002-of-00003.safetensors",
|
174 |
+
"transformer.h.23.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
175 |
+
"transformer.h.23.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"transformer.h.23.mlp.fc_out.bias": "model-00002-of-00003.safetensors",
|
177 |
+
"transformer.h.23.mlp.fc_out.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"transformer.h.24.attn.bias": "model-00002-of-00003.safetensors",
|
179 |
+
"transformer.h.24.attn.masked_bias": "model-00002-of-00003.safetensors",
|
180 |
+
"transformer.h.24.attn.out_proj.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"transformer.h.24.attn.qkv_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"transformer.h.24.ln_1.bias": "model-00002-of-00003.safetensors",
|
183 |
+
"transformer.h.24.ln_1.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"transformer.h.24.mlp.fc_in.bias": "model-00002-of-00003.safetensors",
|
185 |
+
"transformer.h.24.mlp.fc_in.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"transformer.h.24.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
187 |
+
"transformer.h.24.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"transformer.h.25.attn.bias": "model-00003-of-00003.safetensors",
|
189 |
+
"transformer.h.25.attn.masked_bias": "model-00003-of-00003.safetensors",
|
190 |
+
"transformer.h.25.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"transformer.h.25.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"transformer.h.25.ln_1.bias": "model-00003-of-00003.safetensors",
|
193 |
+
"transformer.h.25.ln_1.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"transformer.h.25.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
195 |
+
"transformer.h.25.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"transformer.h.25.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
197 |
+
"transformer.h.25.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"transformer.h.26.attn.bias": "model-00003-of-00003.safetensors",
|
199 |
+
"transformer.h.26.attn.masked_bias": "model-00003-of-00003.safetensors",
|
200 |
+
"transformer.h.26.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"transformer.h.26.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"transformer.h.26.ln_1.bias": "model-00003-of-00003.safetensors",
|
203 |
+
"transformer.h.26.ln_1.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"transformer.h.26.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
205 |
+
"transformer.h.26.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"transformer.h.26.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
207 |
+
"transformer.h.26.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"transformer.h.27.attn.bias": "model-00003-of-00003.safetensors",
|
209 |
+
"transformer.h.27.attn.masked_bias": "model-00003-of-00003.safetensors",
|
210 |
+
"transformer.h.27.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"transformer.h.27.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"transformer.h.27.ln_1.bias": "model-00003-of-00003.safetensors",
|
213 |
+
"transformer.h.27.ln_1.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"transformer.h.27.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
215 |
+
"transformer.h.27.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"transformer.h.27.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
217 |
+
"transformer.h.27.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
218 |
+
"transformer.h.28.attn.bias": "model-00003-of-00003.safetensors",
|
219 |
+
"transformer.h.28.attn.masked_bias": "model-00003-of-00003.safetensors",
|
220 |
+
"transformer.h.28.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
221 |
+
"transformer.h.28.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
222 |
+
"transformer.h.28.ln_1.bias": "model-00003-of-00003.safetensors",
|
223 |
+
"transformer.h.28.ln_1.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"transformer.h.28.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
225 |
+
"transformer.h.28.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"transformer.h.28.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
227 |
+
"transformer.h.28.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"transformer.h.29.attn.bias": "model-00003-of-00003.safetensors",
|
229 |
+
"transformer.h.29.attn.masked_bias": "model-00003-of-00003.safetensors",
|
230 |
+
"transformer.h.29.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"transformer.h.29.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"transformer.h.29.ln_1.bias": "model-00003-of-00003.safetensors",
|
233 |
+
"transformer.h.29.ln_1.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"transformer.h.29.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
235 |
+
"transformer.h.29.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"transformer.h.29.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
237 |
+
"transformer.h.29.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"transformer.h.3.attn.bias": "model-00001-of-00003.safetensors",
|
239 |
+
"transformer.h.3.attn.masked_bias": "model-00001-of-00003.safetensors",
|
240 |
+
"transformer.h.3.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
241 |
+
"transformer.h.3.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
242 |
+
"transformer.h.3.ln_1.bias": "model-00001-of-00003.safetensors",
|
243 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"transformer.h.3.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
245 |
+
"transformer.h.3.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"transformer.h.3.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
247 |
+
"transformer.h.3.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"transformer.h.30.attn.bias": "model-00003-of-00003.safetensors",
|
249 |
+
"transformer.h.30.attn.masked_bias": "model-00003-of-00003.safetensors",
|
250 |
+
"transformer.h.30.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
251 |
+
"transformer.h.30.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
252 |
+
"transformer.h.30.ln_1.bias": "model-00003-of-00003.safetensors",
|
253 |
+
"transformer.h.30.ln_1.weight": "model-00003-of-00003.safetensors",
|
254 |
+
"transformer.h.30.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
255 |
+
"transformer.h.30.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
256 |
+
"transformer.h.30.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
257 |
+
"transformer.h.30.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
258 |
+
"transformer.h.31.attn.bias": "model-00003-of-00003.safetensors",
|
259 |
+
"transformer.h.31.attn.masked_bias": "model-00003-of-00003.safetensors",
|
260 |
+
"transformer.h.31.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
261 |
+
"transformer.h.31.attn.qkv_proj.weight": "model-00003-of-00003.safetensors",
|
262 |
+
"transformer.h.31.ln_1.bias": "model-00003-of-00003.safetensors",
|
263 |
+
"transformer.h.31.ln_1.weight": "model-00003-of-00003.safetensors",
|
264 |
+
"transformer.h.31.mlp.fc_in.bias": "model-00003-of-00003.safetensors",
|
265 |
+
"transformer.h.31.mlp.fc_in.weight": "model-00003-of-00003.safetensors",
|
266 |
+
"transformer.h.31.mlp.fc_out.bias": "model-00003-of-00003.safetensors",
|
267 |
+
"transformer.h.31.mlp.fc_out.weight": "model-00003-of-00003.safetensors",
|
268 |
+
"transformer.h.4.attn.bias": "model-00001-of-00003.safetensors",
|
269 |
+
"transformer.h.4.attn.masked_bias": "model-00001-of-00003.safetensors",
|
270 |
+
"transformer.h.4.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"transformer.h.4.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"transformer.h.4.ln_1.bias": "model-00001-of-00003.safetensors",
|
273 |
+
"transformer.h.4.ln_1.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"transformer.h.4.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
275 |
+
"transformer.h.4.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"transformer.h.4.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
277 |
+
"transformer.h.4.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"transformer.h.5.attn.bias": "model-00001-of-00003.safetensors",
|
279 |
+
"transformer.h.5.attn.masked_bias": "model-00001-of-00003.safetensors",
|
280 |
+
"transformer.h.5.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"transformer.h.5.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"transformer.h.5.ln_1.bias": "model-00001-of-00003.safetensors",
|
283 |
+
"transformer.h.5.ln_1.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"transformer.h.5.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
285 |
+
"transformer.h.5.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"transformer.h.5.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
287 |
+
"transformer.h.5.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"transformer.h.6.attn.bias": "model-00001-of-00003.safetensors",
|
289 |
+
"transformer.h.6.attn.masked_bias": "model-00001-of-00003.safetensors",
|
290 |
+
"transformer.h.6.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"transformer.h.6.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"transformer.h.6.ln_1.bias": "model-00001-of-00003.safetensors",
|
293 |
+
"transformer.h.6.ln_1.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"transformer.h.6.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
295 |
+
"transformer.h.6.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"transformer.h.6.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
297 |
+
"transformer.h.6.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
298 |
+
"transformer.h.7.attn.bias": "model-00001-of-00003.safetensors",
|
299 |
+
"transformer.h.7.attn.masked_bias": "model-00001-of-00003.safetensors",
|
300 |
+
"transformer.h.7.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"transformer.h.7.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
302 |
+
"transformer.h.7.ln_1.bias": "model-00001-of-00003.safetensors",
|
303 |
+
"transformer.h.7.ln_1.weight": "model-00001-of-00003.safetensors",
|
304 |
+
"transformer.h.7.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
305 |
+
"transformer.h.7.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
306 |
+
"transformer.h.7.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
307 |
+
"transformer.h.7.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
308 |
+
"transformer.h.8.attn.bias": "model-00001-of-00003.safetensors",
|
309 |
+
"transformer.h.8.attn.masked_bias": "model-00001-of-00003.safetensors",
|
310 |
+
"transformer.h.8.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
311 |
+
"transformer.h.8.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
312 |
+
"transformer.h.8.ln_1.bias": "model-00001-of-00003.safetensors",
|
313 |
+
"transformer.h.8.ln_1.weight": "model-00001-of-00003.safetensors",
|
314 |
+
"transformer.h.8.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
315 |
+
"transformer.h.8.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
316 |
+
"transformer.h.8.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
317 |
+
"transformer.h.8.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
318 |
+
"transformer.h.9.attn.bias": "model-00001-of-00003.safetensors",
|
319 |
+
"transformer.h.9.attn.masked_bias": "model-00001-of-00003.safetensors",
|
320 |
+
"transformer.h.9.attn.out_proj.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"transformer.h.9.attn.qkv_proj.weight": "model-00001-of-00003.safetensors",
|
322 |
+
"transformer.h.9.ln_1.bias": "model-00001-of-00003.safetensors",
|
323 |
+
"transformer.h.9.ln_1.weight": "model-00001-of-00003.safetensors",
|
324 |
+
"transformer.h.9.mlp.fc_in.bias": "model-00001-of-00003.safetensors",
|
325 |
+
"transformer.h.9.mlp.fc_in.weight": "model-00001-of-00003.safetensors",
|
326 |
+
"transformer.h.9.mlp.fc_out.bias": "model-00001-of-00003.safetensors",
|
327 |
+
"transformer.h.9.mlp.fc_out.weight": "model-00001-of-00003.safetensors",
|
328 |
+
"transformer.ln_f.bias": "model-00003-of-00003.safetensors",
|
329 |
+
"transformer.ln_f.weight": "model-00003-of-00003.safetensors",
|
330 |
+
"transformer.structure.attn_pool.attn.in_proj_bias": "model-00003-of-00003.safetensors",
|
331 |
+
"transformer.structure.attn_pool.attn.in_proj_weight": "model-00003-of-00003.safetensors",
|
332 |
+
"transformer.structure.attn_pool.attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
333 |
+
"transformer.structure.attn_pool.attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
334 |
+
"transformer.structure.attn_pool.kv_proj.weight": "model-00003-of-00003.safetensors",
|
335 |
+
"transformer.structure.attn_pool.latents": "model-00003-of-00003.safetensors",
|
336 |
+
"transformer.structure.attn_pool.ln_kv.bias": "model-00003-of-00003.safetensors",
|
337 |
+
"transformer.structure.attn_pool.ln_kv.weight": "model-00003-of-00003.safetensors",
|
338 |
+
"transformer.structure.attn_pool.ln_post.bias": "model-00003-of-00003.safetensors",
|
339 |
+
"transformer.structure.attn_pool.ln_post.weight": "model-00003-of-00003.safetensors",
|
340 |
+
"transformer.structure.attn_pool.ln_q.bias": "model-00003-of-00003.safetensors",
|
341 |
+
"transformer.structure.attn_pool.ln_q.weight": "model-00003-of-00003.safetensors",
|
342 |
+
"transformer.structure.attn_pool.pos_embed": "model-00003-of-00003.safetensors",
|
343 |
+
"transformer.structure.attn_pool.proj.weight": "model-00003-of-00003.safetensors",
|
344 |
+
"transformer.wte.weight": "model-00001-of-00003.safetensors"
|
345 |
+
}
|
346 |
+
}
|
modeling_InstructProGen.py
ADDED
@@ -0,0 +1,700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
12 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
13 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
14 |
+
from transformers.generation.streamers import BaseStreamer
|
15 |
+
from transformers.generation.utils import GenerateOutput
|
16 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
20 |
+
from .configuration_progen import ProGenConfig
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
from .structure import StructureTransformer
|
25 |
+
|
26 |
+
|
27 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
28 |
+
dim = x.shape[-1]
|
29 |
+
if seq_len is None:
|
30 |
+
seq_len = x.shape[seq_dim]
|
31 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
32 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq).to(x.device).float()
|
33 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
34 |
+
|
35 |
+
|
36 |
+
def rotate_every_two(x):
|
37 |
+
x1 = x[:, :, :, ::2]
|
38 |
+
x2 = x[:, :, :, 1::2]
|
39 |
+
x = torch.stack((-x2, x1), axis=-1)
|
40 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
41 |
+
|
42 |
+
|
43 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
44 |
+
sin, cos = map(lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(2, 3), sincos)
|
45 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
46 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
47 |
+
|
48 |
+
|
49 |
+
class ProGenAttention(nn.Module):
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
max_positions = config.max_position_embeddings
|
54 |
+
self.register_buffer(
|
55 |
+
"bias",
|
56 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
57 |
+
1, 1, max_positions, max_positions
|
58 |
+
),
|
59 |
+
)
|
60 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9))
|
61 |
+
|
62 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
63 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
64 |
+
|
65 |
+
self.embed_dim = config.hidden_size
|
66 |
+
self.num_attention_heads = config.num_attention_heads
|
67 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
68 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
69 |
+
raise ValueError(
|
70 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and `num_attention_heads`: {self.num_attention_heads})."
|
71 |
+
)
|
72 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
73 |
+
self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False)
|
74 |
+
|
75 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
76 |
+
self.rotary_dim = None
|
77 |
+
if config.rotary_dim is not None:
|
78 |
+
self.rotary_dim = config.rotary_dim
|
79 |
+
|
80 |
+
def _split_heads(self, x, n_head, dim_head, mp_num):
|
81 |
+
reshaped = x.reshape(x.shape[:-1] + (n_head//mp_num, dim_head))
|
82 |
+
reshaped = reshaped.reshape(x.shape[:-2] + (-1, ) + reshaped.shape[-1:])
|
83 |
+
return reshaped
|
84 |
+
|
85 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
86 |
+
"""
|
87 |
+
Merges attn_head_size dim and num_attn_heads dim into n_ctx
|
88 |
+
"""
|
89 |
+
if len(tensor.shape) == 5:
|
90 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
91 |
+
elif len(tensor.shape) == 4:
|
92 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
93 |
+
else:
|
94 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
95 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
96 |
+
return tensor.view(new_shape)
|
97 |
+
|
98 |
+
def _attn(
|
99 |
+
self,
|
100 |
+
query,
|
101 |
+
key,
|
102 |
+
value,
|
103 |
+
attention_mask=None,
|
104 |
+
head_mask=None,
|
105 |
+
):
|
106 |
+
|
107 |
+
# compute causal mask from causal mask buffer
|
108 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
109 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
110 |
+
|
111 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
112 |
+
query = query.to(torch.float32)
|
113 |
+
key = key.to(torch.float32)
|
114 |
+
|
115 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
116 |
+
|
117 |
+
attn_weights = attn_weights / self.scale_attn
|
118 |
+
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
119 |
+
|
120 |
+
if attention_mask is not None:
|
121 |
+
# Apply the attention mask
|
122 |
+
attn_weights = attn_weights + attention_mask
|
123 |
+
|
124 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
125 |
+
attn_weights = attn_weights.to(value.dtype)
|
126 |
+
attn_weights = self.attn_dropout(attn_weights)
|
127 |
+
|
128 |
+
# Mask heads if we want to
|
129 |
+
if head_mask is not None:
|
130 |
+
attn_weights = attn_weights * head_mask
|
131 |
+
|
132 |
+
attn_output = torch.matmul(attn_weights, value)
|
133 |
+
|
134 |
+
return attn_output, attn_weights
|
135 |
+
|
136 |
+
def forward(
|
137 |
+
self,
|
138 |
+
hidden_states,
|
139 |
+
attention_mask=None,
|
140 |
+
layer_past=None,
|
141 |
+
head_mask=None,
|
142 |
+
use_cache=False,
|
143 |
+
output_attentions=False,
|
144 |
+
):
|
145 |
+
|
146 |
+
qkv = self.qkv_proj(hidden_states)
|
147 |
+
# TODO(enijkamp): factor out number of logical TPU-v3/v4 cores or make forward pass agnostic
|
148 |
+
# mp_num = 4
|
149 |
+
mp_num = 8
|
150 |
+
qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1))
|
151 |
+
|
152 |
+
local_dim = self.head_dim * self.num_attention_heads // mp_num
|
153 |
+
query, value, key = torch.split(qkv_split, local_dim, dim=-1)
|
154 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
155 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
156 |
+
|
157 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num)
|
158 |
+
value = value.permute(0, 2, 1, 3)
|
159 |
+
|
160 |
+
seq_len = key.shape[1]
|
161 |
+
offset = 0
|
162 |
+
|
163 |
+
if layer_past is not None:
|
164 |
+
offset = layer_past[0].shape[-2]
|
165 |
+
seq_len += offset
|
166 |
+
|
167 |
+
if self.rotary_dim is not None:
|
168 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
169 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
170 |
+
|
171 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
172 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
173 |
+
|
174 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len)
|
175 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset)
|
176 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset)
|
177 |
+
|
178 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
179 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
180 |
+
else:
|
181 |
+
sincos = fixed_pos_embedding(key, 1, seq_len=seq_len)
|
182 |
+
key = apply_rotary_pos_emb(key, sincos, offset=offset)
|
183 |
+
query = apply_rotary_pos_emb(query, sincos, offset=offset)
|
184 |
+
|
185 |
+
key = key.permute(0, 2, 1, 3)
|
186 |
+
query = query.permute(0, 2, 1, 3)
|
187 |
+
|
188 |
+
if layer_past is not None:
|
189 |
+
past_key = layer_past[0]
|
190 |
+
past_value = layer_past[1]
|
191 |
+
key = torch.cat((past_key, key), dim=-2)
|
192 |
+
value = torch.cat((past_value, value), dim=-2)
|
193 |
+
|
194 |
+
if use_cache is True:
|
195 |
+
present = (key, value)
|
196 |
+
else:
|
197 |
+
present = None
|
198 |
+
|
199 |
+
# compute self-attention: V x Softmax(QK^T)
|
200 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
201 |
+
|
202 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
203 |
+
|
204 |
+
attn_output = self.out_proj(attn_output)
|
205 |
+
attn_output = self.resid_dropout(attn_output)
|
206 |
+
|
207 |
+
outputs = (attn_output, present)
|
208 |
+
if output_attentions:
|
209 |
+
outputs += (attn_weights,)
|
210 |
+
|
211 |
+
return outputs # a, present, (attentions)
|
212 |
+
|
213 |
+
|
214 |
+
class ProGenMLP(nn.Module):
|
215 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
216 |
+
super().__init__()
|
217 |
+
embed_dim = config.n_embd
|
218 |
+
|
219 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
220 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
221 |
+
|
222 |
+
self.act = ACT2FN[config.activation_function]
|
223 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
224 |
+
|
225 |
+
def forward(self, hidden_states):
|
226 |
+
hidden_states = self.fc_in(hidden_states)
|
227 |
+
hidden_states = self.act(hidden_states)
|
228 |
+
hidden_states = self.fc_out(hidden_states)
|
229 |
+
hidden_states = self.dropout(hidden_states)
|
230 |
+
return hidden_states
|
231 |
+
|
232 |
+
|
233 |
+
class ProGenBlock(nn.Module):
|
234 |
+
def __init__(self, config):
|
235 |
+
super().__init__()
|
236 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
237 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
238 |
+
self.attn = ProGenAttention(config)
|
239 |
+
self.mlp = ProGenMLP(inner_dim, config)
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
hidden_states,
|
244 |
+
layer_past=None,
|
245 |
+
attention_mask=None,
|
246 |
+
head_mask=None,
|
247 |
+
use_cache=False,
|
248 |
+
output_attentions=False,
|
249 |
+
):
|
250 |
+
residual = hidden_states
|
251 |
+
hidden_states = self.ln_1(hidden_states)
|
252 |
+
attn_outputs = self.attn(
|
253 |
+
hidden_states,
|
254 |
+
layer_past=layer_past,
|
255 |
+
attention_mask=attention_mask,
|
256 |
+
head_mask=head_mask,
|
257 |
+
use_cache=use_cache,
|
258 |
+
output_attentions=output_attentions,
|
259 |
+
)
|
260 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
261 |
+
outputs = attn_outputs[1:]
|
262 |
+
|
263 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
264 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
265 |
+
|
266 |
+
if use_cache:
|
267 |
+
outputs = (hidden_states,) + outputs
|
268 |
+
else:
|
269 |
+
outputs = (hidden_states,) + outputs[1:]
|
270 |
+
|
271 |
+
return outputs # hidden_states, present, (attentions)
|
272 |
+
|
273 |
+
|
274 |
+
class ProGenPreTrainedModel(PreTrainedModel):
|
275 |
+
"""
|
276 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
277 |
+
models.
|
278 |
+
"""
|
279 |
+
|
280 |
+
config_class = ProGenConfig
|
281 |
+
base_model_prefix = "transformer"
|
282 |
+
supports_gradient_checkpointing = True
|
283 |
+
is_parallelizable = True
|
284 |
+
|
285 |
+
def __init__(self, *inputs, **kwargs):
|
286 |
+
super().__init__(*inputs, **kwargs)
|
287 |
+
|
288 |
+
def _init_weights(self, module):
|
289 |
+
"""Initialize the weights."""
|
290 |
+
if isinstance(module, (nn.Linear,)):
|
291 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
292 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
293 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
294 |
+
if module.bias is not None:
|
295 |
+
module.bias.data.zero_()
|
296 |
+
elif isinstance(module, nn.Embedding):
|
297 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
298 |
+
if module.padding_idx is not None:
|
299 |
+
module.weight.data[module.padding_idx].zero_()
|
300 |
+
elif isinstance(module, nn.LayerNorm):
|
301 |
+
module.bias.data.zero_()
|
302 |
+
module.weight.data.fill_(1.0)
|
303 |
+
|
304 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
305 |
+
if isinstance(module, ProGenModel):
|
306 |
+
module.gradient_checkpointing = value
|
307 |
+
|
308 |
+
class ProGenModel(ProGenPreTrainedModel):
|
309 |
+
def __init__(self, config):
|
310 |
+
super().__init__(config)
|
311 |
+
|
312 |
+
self.embed_dim = config.n_embd
|
313 |
+
self.vocab_size = config.vocab_size
|
314 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
315 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
316 |
+
self.h = nn.ModuleList([ProGenBlock(config) for _ in range(config.n_layer)])
|
317 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
318 |
+
self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.num_attention_heads)
|
319 |
+
|
320 |
+
self.gradient_checkpointing = False
|
321 |
+
self.structure = StructureTransformer(**config.structure)
|
322 |
+
|
323 |
+
self.init_weights()
|
324 |
+
|
325 |
+
# Model parallel
|
326 |
+
self.model_parallel = False
|
327 |
+
self.device_map = None
|
328 |
+
|
329 |
+
|
330 |
+
def parallelize(self, device_map=None):
|
331 |
+
# Check validity of device_map
|
332 |
+
self.device_map = (
|
333 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
334 |
+
)
|
335 |
+
assert_device_map(self.device_map, len(self.h))
|
336 |
+
self.model_parallel = True
|
337 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
338 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
339 |
+
self.wte = self.wte.to(self.first_device)
|
340 |
+
# Load onto devices
|
341 |
+
for k, v in self.device_map.items():
|
342 |
+
for block in v:
|
343 |
+
cuda_device = "cuda:" + str(k)
|
344 |
+
self.h[block] = self.h[block].to(cuda_device)
|
345 |
+
# ln_f to last
|
346 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
347 |
+
|
348 |
+
|
349 |
+
def deparallelize(self):
|
350 |
+
self.model_parallel = False
|
351 |
+
self.device_map = None
|
352 |
+
self.first_device = "cpu"
|
353 |
+
self.last_device = "cpu"
|
354 |
+
self.wte = self.wte.to("cpu")
|
355 |
+
for index in range(len(self.h)):
|
356 |
+
self.h[index] = self.h[index].to("cpu")
|
357 |
+
self.ln_f = self.ln_f.to("cpu")
|
358 |
+
torch.cuda.empty_cache()
|
359 |
+
|
360 |
+
def get_input_embeddings(self):
|
361 |
+
return self.wte
|
362 |
+
|
363 |
+
def set_input_embeddings(self, new_embeddings):
|
364 |
+
self.wte = new_embeddings
|
365 |
+
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
input_ids=None,
|
369 |
+
past_key_values=None,
|
370 |
+
attention_mask=None,
|
371 |
+
token_type_ids=None,
|
372 |
+
position_ids=None,
|
373 |
+
head_mask=None,
|
374 |
+
inputs_embeds=None,
|
375 |
+
query_embeds=None,
|
376 |
+
use_cache=None,
|
377 |
+
output_attentions=None,
|
378 |
+
output_hidden_states=None,
|
379 |
+
return_dict=None,
|
380 |
+
):
|
381 |
+
if past_key_values is None:
|
382 |
+
# structure encode will check if input_ids contains valid
|
383 |
+
structure_embs = self.structure.encode(input_ids)
|
384 |
+
if structure_embs is not None:
|
385 |
+
input_ids = input_ids[:, self.structure.n_queries:]
|
386 |
+
else:
|
387 |
+
structure_embs = None
|
388 |
+
|
389 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
390 |
+
output_hidden_states = (
|
391 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
392 |
+
)
|
393 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
394 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
395 |
+
|
396 |
+
if input_ids is not None and inputs_embeds is not None:
|
397 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
398 |
+
elif input_ids is not None:
|
399 |
+
input_shape = input_ids.size()
|
400 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
401 |
+
batch_size = input_ids.shape[0]
|
402 |
+
elif inputs_embeds is not None:
|
403 |
+
input_shape = inputs_embeds.size()[:-1]
|
404 |
+
batch_size = inputs_embeds.shape[0]
|
405 |
+
else:
|
406 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
407 |
+
|
408 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
409 |
+
|
410 |
+
# if token_type_ids is not None:
|
411 |
+
# token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
412 |
+
|
413 |
+
if position_ids is not None:
|
414 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
415 |
+
|
416 |
+
if past_key_values is None:
|
417 |
+
past_length = 0
|
418 |
+
past_key_values = tuple([None] * len(self.h))
|
419 |
+
else:
|
420 |
+
past_length = past_key_values[0][0].size(-2)
|
421 |
+
|
422 |
+
if position_ids is None:
|
423 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
424 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
425 |
+
|
426 |
+
# Attention mask.
|
427 |
+
if attention_mask is not None:
|
428 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
429 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
430 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
431 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
432 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
433 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
434 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
435 |
+
attention_mask = attention_mask[:, None, None, :]
|
436 |
+
|
437 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
438 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
439 |
+
# positions we want to attend and -10000.0 for masked positions.
|
440 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
441 |
+
# effectively the same as removing these entirely.
|
442 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
443 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
444 |
+
|
445 |
+
# Prepare head mask if needed
|
446 |
+
# 1.0 in head_mask indicate we keep the head
|
447 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
448 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
449 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
450 |
+
|
451 |
+
if inputs_embeds is None:
|
452 |
+
inputs_embeds = self.wte(input_ids)
|
453 |
+
|
454 |
+
if query_embeds is not None:
|
455 |
+
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
456 |
+
input_shape = inputs_embeds.size()[:-1]
|
457 |
+
|
458 |
+
if structure_embs is not None:
|
459 |
+
inputs_embeds = torch.cat([structure_embs, inputs_embeds], dim=1)
|
460 |
+
input_shape = inputs_embeds.size()[:-1]
|
461 |
+
|
462 |
+
hidden_states = inputs_embeds
|
463 |
+
|
464 |
+
# disable token_type_ids
|
465 |
+
# if token_type_ids is not None:
|
466 |
+
# token_type_embeds = self.wte(token_type_ids)
|
467 |
+
# hidden_states = hidden_states + token_type_embeds
|
468 |
+
|
469 |
+
hidden_states = self.drop(hidden_states)
|
470 |
+
|
471 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
472 |
+
|
473 |
+
presents = () if use_cache else None
|
474 |
+
all_self_attentions = () if output_attentions else None
|
475 |
+
all_hidden_states = () if output_hidden_states else None
|
476 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
477 |
+
|
478 |
+
# Model parallel
|
479 |
+
if self.model_parallel:
|
480 |
+
torch.cuda.set_device(hidden_states.device)
|
481 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
482 |
+
if layer_past is not None:
|
483 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
484 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
485 |
+
if attention_mask is not None:
|
486 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
487 |
+
if isinstance(head_mask, torch.Tensor):
|
488 |
+
head_mask = head_mask.to(hidden_states.device)
|
489 |
+
if output_hidden_states:
|
490 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
491 |
+
|
492 |
+
if self.gradient_checkpointing and self.training:
|
493 |
+
|
494 |
+
if use_cache:
|
495 |
+
# logger.warning(
|
496 |
+
# "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
497 |
+
# "`use_cache=False`..."
|
498 |
+
# )
|
499 |
+
use_cache = False
|
500 |
+
|
501 |
+
def create_custom_forward(module):
|
502 |
+
def custom_forward(*inputs):
|
503 |
+
# None for past_key_value
|
504 |
+
return module(*inputs, use_cache, output_attentions)
|
505 |
+
|
506 |
+
return custom_forward
|
507 |
+
|
508 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
509 |
+
create_custom_forward(block),
|
510 |
+
hidden_states,
|
511 |
+
None,
|
512 |
+
attention_mask,
|
513 |
+
head_mask[i],
|
514 |
+
)
|
515 |
+
else:
|
516 |
+
outputs = block(
|
517 |
+
hidden_states,
|
518 |
+
layer_past=layer_past,
|
519 |
+
attention_mask=attention_mask,
|
520 |
+
head_mask=head_mask[i],
|
521 |
+
use_cache=use_cache,
|
522 |
+
output_attentions=output_attentions,
|
523 |
+
)
|
524 |
+
|
525 |
+
hidden_states = outputs[0]
|
526 |
+
if use_cache is True:
|
527 |
+
presents = presents + (outputs[1],)
|
528 |
+
|
529 |
+
if output_attentions:
|
530 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
531 |
+
|
532 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
533 |
+
if self.model_parallel:
|
534 |
+
for k, v in self.device_map.items():
|
535 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
536 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
537 |
+
|
538 |
+
hidden_states = self.ln_f(hidden_states)
|
539 |
+
|
540 |
+
hidden_states = hidden_states.view(*output_shape)
|
541 |
+
# Add last hidden state
|
542 |
+
if output_hidden_states:
|
543 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
544 |
+
|
545 |
+
if not return_dict:
|
546 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
547 |
+
|
548 |
+
return BaseModelOutputWithPast(
|
549 |
+
last_hidden_state=hidden_states,
|
550 |
+
past_key_values=presents,
|
551 |
+
hidden_states=all_hidden_states,
|
552 |
+
attentions=all_self_attentions,
|
553 |
+
)
|
554 |
+
|
555 |
+
|
556 |
+
class ProGenForCausalLM(ProGenPreTrainedModel):
|
557 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head\.weight"]
|
558 |
+
|
559 |
+
def __init__(self, config):
|
560 |
+
super().__init__(config)
|
561 |
+
self.transformer = ProGenModel(config)
|
562 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
563 |
+
self.init_weights()
|
564 |
+
|
565 |
+
# Model parallel
|
566 |
+
self.model_parallel = False
|
567 |
+
self.device_map = None
|
568 |
+
|
569 |
+
def parallelize(self, device_map=None):
|
570 |
+
self.device_map = (
|
571 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
572 |
+
if device_map is None
|
573 |
+
else device_map
|
574 |
+
)
|
575 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
576 |
+
self.transformer.parallelize(self.device_map)
|
577 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
578 |
+
self.model_parallel = True
|
579 |
+
|
580 |
+
def deparallelize(self):
|
581 |
+
self.transformer.deparallelize()
|
582 |
+
self.transformer = self.transformer.to("cpu")
|
583 |
+
self.lm_head = self.lm_head.to("cpu")
|
584 |
+
self.model_parallel = False
|
585 |
+
torch.cuda.empty_cache()
|
586 |
+
|
587 |
+
def get_output_embeddings(self):
|
588 |
+
return self.lm_head
|
589 |
+
|
590 |
+
def set_output_embeddings(self, new_embeddings):
|
591 |
+
self.lm_head = new_embeddings
|
592 |
+
|
593 |
+
def prepare_inputs_for_generation(
|
594 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
595 |
+
):
|
596 |
+
if past_key_values:
|
597 |
+
input_ids = input_ids[:, -1:]
|
598 |
+
|
599 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
600 |
+
if inputs_embeds is not None and past_key_values is None:
|
601 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
602 |
+
else:
|
603 |
+
model_inputs = {"input_ids": input_ids}
|
604 |
+
|
605 |
+
model_inputs.update(
|
606 |
+
{
|
607 |
+
"past_key_values": past_key_values,
|
608 |
+
"use_cache": kwargs.get("use_cache"),
|
609 |
+
"attention_mask": attention_mask,
|
610 |
+
}
|
611 |
+
)
|
612 |
+
return model_inputs
|
613 |
+
|
614 |
+
def forward(
|
615 |
+
self,
|
616 |
+
input_ids=None,
|
617 |
+
past_key_values=None,
|
618 |
+
attention_mask=None,
|
619 |
+
token_type_ids=None,
|
620 |
+
position_ids=None,
|
621 |
+
head_mask=None,
|
622 |
+
inputs_embeds=None,
|
623 |
+
labels=None,
|
624 |
+
use_cache=None,
|
625 |
+
query_embeds = None,
|
626 |
+
output_attentions=None,
|
627 |
+
output_hidden_states=None,
|
628 |
+
return_dict=None,
|
629 |
+
):
|
630 |
+
r"""
|
631 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
632 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
633 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
634 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
635 |
+
"""
|
636 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
637 |
+
|
638 |
+
transformer_outputs = self.transformer(
|
639 |
+
input_ids,
|
640 |
+
past_key_values=past_key_values,
|
641 |
+
attention_mask=attention_mask,
|
642 |
+
token_type_ids=token_type_ids,
|
643 |
+
position_ids=position_ids,
|
644 |
+
head_mask=head_mask,
|
645 |
+
inputs_embeds=inputs_embeds,
|
646 |
+
query_embeds=query_embeds,
|
647 |
+
use_cache=use_cache,
|
648 |
+
output_attentions=output_attentions,
|
649 |
+
output_hidden_states=output_hidden_states,
|
650 |
+
return_dict=return_dict,
|
651 |
+
)
|
652 |
+
hidden_states = transformer_outputs[0]
|
653 |
+
|
654 |
+
# Set device for model parallelism
|
655 |
+
if self.model_parallel:
|
656 |
+
torch.cuda.set_device(self.transformer.first_device)
|
657 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
658 |
+
|
659 |
+
# make sure sampling in fp16 works correctly and
|
660 |
+
# compute loss in fp32 to match with mesh-tf version
|
661 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
662 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
663 |
+
|
664 |
+
loss = None
|
665 |
+
if labels is not None:
|
666 |
+
# Shift so that tokens < n predict n
|
667 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
668 |
+
shift_labels = labels[..., 1:].contiguous()
|
669 |
+
# Flatten the tokens
|
670 |
+
loss_fct = CrossEntropyLoss()
|
671 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
672 |
+
|
673 |
+
loss = loss.to(hidden_states.dtype)
|
674 |
+
|
675 |
+
if not return_dict:
|
676 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
677 |
+
return ((loss,) + output) if loss is not None else output
|
678 |
+
|
679 |
+
return CausalLMOutputWithPast(
|
680 |
+
loss=loss,
|
681 |
+
logits=lm_logits,
|
682 |
+
past_key_values=transformer_outputs.past_key_values,
|
683 |
+
hidden_states=transformer_outputs.hidden_states,
|
684 |
+
attentions=transformer_outputs.attentions,
|
685 |
+
)
|
686 |
+
|
687 |
+
@staticmethod
|
688 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
689 |
+
"""
|
690 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
691 |
+
:meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is
|
692 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
693 |
+
"""
|
694 |
+
return tuple(
|
695 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
696 |
+
for layer_past in past
|
697 |
+
)
|
698 |
+
|
699 |
+
# def generate(self, inputs: Tensor | None = None, generation_config: GenerationConfig | None = None, logits_processor: LogitsProcessorList | None = None, stopping_criteria: StoppingCriteriaList | None = None, prefix_allowed_tokens_fn: Callable[[int, Tensor], List[int]] | None = None, synced_gpus: bool | None = None, assistant_model: PreTrainedModel | None = None, streamer: BaseStreamer | None = None, negative_prompt_ids: Tensor | None = None, negative_prompt_attention_mask: Tensor | None = None, **kwargs) -> GenerateOutput | LongTensor:
|
700 |
+
# return super().generate(inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, assistant_model, streamer, negative_prompt_ids, negative_prompt_attention_mask, **kwargs)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": {
|
3 |
+
"content": "<|pad|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
}
|
9 |
+
}
|
structure.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
import math
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
from functools import partial
|
11 |
+
import pickle
|
12 |
+
from typing import Callable, Optional, Sequence, Tuple, List
|
13 |
+
import numpy as np
|
14 |
+
import os
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from torch.nn.init import trunc_normal_
|
19 |
+
from torchvision import transforms
|
20 |
+
from torchvision.transforms import InterpolationMode
|
21 |
+
|
22 |
+
class GLU(nn.Module):
|
23 |
+
def __init__(self,hidden_size):
|
24 |
+
super().__init__()
|
25 |
+
self.linear_proj = nn.Linear(hidden_size,hidden_size,bias=False)
|
26 |
+
self.norm1 = nn.LayerNorm(hidden_size)
|
27 |
+
self.act1 = nn.GELU()
|
28 |
+
self.act2 = nn.functional.silu
|
29 |
+
self.dense_h_to_4h = nn.Linear(hidden_size,hidden_size*4,bias=False)
|
30 |
+
self.gate_proj = nn.Linear(hidden_size,hidden_size*4,bias=False)
|
31 |
+
self.dense_4h_to_h = nn.Linear(hidden_size*4,hidden_size,bias=False)
|
32 |
+
|
33 |
+
def forward(self,x):
|
34 |
+
x = self.linear_proj(x)
|
35 |
+
x = self.act1(self.norm1(x))
|
36 |
+
x = self.act2(self.gate_proj(x))*self.dense_h_to_4h(x)
|
37 |
+
x = self.dense_4h_to_h(x)
|
38 |
+
return x
|
39 |
+
def swiglu(x):
|
40 |
+
x = torch.chunk(x, 2, dim=-1)
|
41 |
+
return nn.functional.silu(x[0]) * x[1]
|
42 |
+
|
43 |
+
class GLU_new(nn.Module):
|
44 |
+
def __init__(self,hidden_size, dropout=0.1):
|
45 |
+
super().__init__()
|
46 |
+
intermediate_size = int((4 * hidden_size * 2 / 3) / 64) * 64
|
47 |
+
intermediate_size = 1280
|
48 |
+
|
49 |
+
self.act = swiglu
|
50 |
+
self.dense_h_to_4h = nn.Linear(hidden_size, intermediate_size * 2, bias=False)
|
51 |
+
self.dense_4h_to_h = nn.Linear(intermediate_size, hidden_size, bias=False)
|
52 |
+
self.dropout = nn.Dropout(p=dropout)
|
53 |
+
|
54 |
+
def forward(self,x):
|
55 |
+
x = self.dense_h_to_4h(x)
|
56 |
+
x = self.act(x)
|
57 |
+
x = self.dense_4h_to_h(x)
|
58 |
+
x = self.dropout(x)
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
n_queries = 32
|
63 |
+
def get_abs_pos(abs_pos, tgt_size):
|
64 |
+
# abs_pos: L, C
|
65 |
+
# tgt_size: M
|
66 |
+
# return: M, C
|
67 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
68 |
+
tgt_size = int(math.sqrt(tgt_size))
|
69 |
+
dtype = abs_pos.dtype
|
70 |
+
|
71 |
+
if src_size != tgt_size:
|
72 |
+
return F.interpolate(
|
73 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
74 |
+
size=(tgt_size, tgt_size),
|
75 |
+
mode="bicubic",
|
76 |
+
align_corners=False,
|
77 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
78 |
+
else:
|
79 |
+
return abs_pos
|
80 |
+
|
81 |
+
from einops import rearrange, repeat
|
82 |
+
|
83 |
+
def get_1d_sincos_pos_embed(embed_dim, pos):
|
84 |
+
"""
|
85 |
+
embed_dim: output dimension for each position
|
86 |
+
pos: a list of positions to be encoded: size (M,)
|
87 |
+
out: (M, D)
|
88 |
+
"""
|
89 |
+
assert embed_dim % 2 == 0
|
90 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
91 |
+
omega /= embed_dim / 2.
|
92 |
+
omega = 1. / 10000**omega # (D/2,)
|
93 |
+
|
94 |
+
pos = pos.reshape(-1) # (M,)
|
95 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
96 |
+
|
97 |
+
emb_sin = np.sin(out) # (M, D/2)
|
98 |
+
emb_cos = np.cos(out) # (M, D/2)
|
99 |
+
|
100 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
101 |
+
return emb
|
102 |
+
|
103 |
+
class Resampler(nn.Module):
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
kv_dim,
|
107 |
+
embed_dim,
|
108 |
+
num_heads=8,
|
109 |
+
n_queries=64,
|
110 |
+
max_seqlen=1024,
|
111 |
+
perceiver_resampler_positional_emb=True,
|
112 |
+
use_GLU=False,
|
113 |
+
bos_init=False,
|
114 |
+
dropout=0.0
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.perceiver_resampler_positional_emb = perceiver_resampler_positional_emb
|
118 |
+
|
119 |
+
if self.perceiver_resampler_positional_emb:
|
120 |
+
assert n_queries <= max_seqlen
|
121 |
+
self.stride = max_seqlen // n_queries
|
122 |
+
# self.nan_emb = nn.Parameter(torch.randn(1, kv_dim))
|
123 |
+
# nn.init.trunc_normal_(self.nan_emb, std=.02)
|
124 |
+
pos = np.arange(max_seqlen, dtype=np.float32)
|
125 |
+
self.register_buffer(
|
126 |
+
"pos_embed",
|
127 |
+
torch.from_numpy(get_1d_sincos_pos_embed(embed_dim, pos)).float()
|
128 |
+
)
|
129 |
+
self.latents = nn.Parameter(torch.randn(n_queries, embed_dim))
|
130 |
+
if bos_init:
|
131 |
+
self.latents.load('')
|
132 |
+
else:
|
133 |
+
nn.init.trunc_normal_(self.latents, std=1e-3)
|
134 |
+
|
135 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
136 |
+
self.attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True, dropout=dropout)
|
137 |
+
self.ln_q = nn.LayerNorm(embed_dim)
|
138 |
+
self.ln_kv = nn.LayerNorm(embed_dim)
|
139 |
+
self.ln_post = nn.LayerNorm(embed_dim)
|
140 |
+
if use_GLU:
|
141 |
+
print('GLU *********************************')
|
142 |
+
self.proj = GLU_new(embed_dim, dropout=dropout)
|
143 |
+
else:
|
144 |
+
self.proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
145 |
+
|
146 |
+
self.apply(self._init_weights)
|
147 |
+
|
148 |
+
def _init_weights(self, m):
|
149 |
+
if isinstance(m, nn.Linear):
|
150 |
+
nn.init.trunc_normal_(m.weight, std=1e-3)
|
151 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
152 |
+
nn.init.constant_(m.bias, 0)
|
153 |
+
elif isinstance(m, nn.LayerNorm):
|
154 |
+
nn.init.constant_(m.bias, 0)
|
155 |
+
nn.init.constant_(m.weight, 1.0)
|
156 |
+
|
157 |
+
def forward(self, struc_x):
|
158 |
+
"""
|
159 |
+
Args:
|
160 |
+
x (torch.Tensor): protein structure features
|
161 |
+
shape (B, L, C)
|
162 |
+
Returns:
|
163 |
+
shape (B, n, C) where n is self.num_latents
|
164 |
+
"""
|
165 |
+
x = struc_x["encoder_out"]
|
166 |
+
mask = struc_x["encoder_padding_mask"]
|
167 |
+
|
168 |
+
|
169 |
+
nan_mask = torch.isnan(x)
|
170 |
+
if nan_mask.any():
|
171 |
+
x = x.masked_fill(nan_mask, 0.0)
|
172 |
+
# nan_mask = nan_mask.sum(dim=-1).bool()
|
173 |
+
# x[nan_mask] += self.nan_emb
|
174 |
+
|
175 |
+
x = self.kv_proj(x)
|
176 |
+
x = self.ln_kv(x)
|
177 |
+
|
178 |
+
b, seqlen = x.shape[:2]
|
179 |
+
|
180 |
+
latents = self.ln_q(self.latents)
|
181 |
+
if self.perceiver_resampler_positional_emb:
|
182 |
+
# TODO: interpolate
|
183 |
+
latents = latents + self.pos_embed[::self.stride].contiguous()
|
184 |
+
pos_emb = self.pos_embed[:seqlen].unsqueeze(0)
|
185 |
+
x = x + pos_emb.contiguous()
|
186 |
+
|
187 |
+
# blocks
|
188 |
+
latents = repeat(latents, "n d -> b n d", b=b)
|
189 |
+
out = self.attn(latents, x, x, key_padding_mask=~mask)[0]
|
190 |
+
|
191 |
+
out = self.ln_post(out)
|
192 |
+
out = self.proj(out)
|
193 |
+
|
194 |
+
return out
|
195 |
+
|
196 |
+
class StructureTransformer(nn.Module):
|
197 |
+
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
width: int = 640,
|
201 |
+
n_queries: int = 32,
|
202 |
+
output_dim: int = 4096,
|
203 |
+
embedding_keys=set(["mpnn_emb"]),
|
204 |
+
max_seqlen: int=1024,
|
205 |
+
num_heads: int=8,
|
206 |
+
structure_emb_path_prefix='structure_emb',
|
207 |
+
**kwargs
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
|
211 |
+
self.structure_emb_path_prefix = structure_emb_path_prefix
|
212 |
+
# self.transformer = None # replace None with a pretrained strucure encoder
|
213 |
+
self.embedding_keys = embedding_keys
|
214 |
+
self.max_seqlen = max_seqlen
|
215 |
+
self.width = width
|
216 |
+
self.n_queries = n_queries
|
217 |
+
|
218 |
+
self.attn_pool = Resampler(
|
219 |
+
embed_dim=output_dim,
|
220 |
+
kv_dim=width,
|
221 |
+
n_queries=n_queries,
|
222 |
+
max_seqlen=max_seqlen,
|
223 |
+
num_heads=num_heads,
|
224 |
+
**kwargs
|
225 |
+
)
|
226 |
+
|
227 |
+
def prepare_structure(self, sample):
|
228 |
+
emb_pad = torch.zeros((self.max_seqlen, self.width))
|
229 |
+
emb_mask = torch.zeros((self.max_seqlen), dtype=bool)
|
230 |
+
|
231 |
+
if "pifold_emb" in self.embedding_keys and "pifold_mask" in sample:
|
232 |
+
mask = sample["pifold_mask"]
|
233 |
+
pifold_emb = sample["pifold_emb"]
|
234 |
+
new_pifold_emb = pifold_emb.new_zeros(mask.shape[0], pifold_emb.shape[1]).fill_(float("nan"))
|
235 |
+
new_pifold_emb[mask > 0] = pifold_emb
|
236 |
+
sample["pifold_emb"] = new_pifold_emb
|
237 |
+
|
238 |
+
### domians ###
|
239 |
+
emb = []
|
240 |
+
for ek in self.embedding_keys:
|
241 |
+
if ek in sample:
|
242 |
+
if isinstance( sample[ek], List):
|
243 |
+
emb.append(torch.cat(sample[ek]))
|
244 |
+
else:
|
245 |
+
emb.append(sample[ek])
|
246 |
+
# emb = [sample[ek] for ek in self.embedding_keys if ek in sample]
|
247 |
+
emb = torch.cat(emb, dim=-1)
|
248 |
+
|
249 |
+
emb_pad[:len(emb)] = emb
|
250 |
+
emb_mask[:len(emb)] = 1
|
251 |
+
return emb_pad, emb_mask
|
252 |
+
|
253 |
+
def forward(self, x):
|
254 |
+
|
255 |
+
# x = self.transformer(x)
|
256 |
+
x = self.attn_pool(x)
|
257 |
+
|
258 |
+
return x
|
259 |
+
|
260 |
+
def encode(self, structure_paths: List[str]):
|
261 |
+
structure_embs = []
|
262 |
+
structure_mask = []
|
263 |
+
|
264 |
+
for structure_path in structure_paths:
|
265 |
+
structure_path = [chr(s) for s in structure_path[:self.n_queries].tolist() if s > 0]
|
266 |
+
structure_path = os.path.join(self.structure_emb_path_prefix, ''.join(structure_path))
|
267 |
+
if not os.path.exists(structure_path):
|
268 |
+
print('no structure found')
|
269 |
+
return None
|
270 |
+
|
271 |
+
with open(structure_path, 'rb') as f:
|
272 |
+
structure, struc_mask = self.prepare_structure(pickle.load(f))
|
273 |
+
|
274 |
+
|
275 |
+
structure_embs.append(structure)
|
276 |
+
structure_mask.append(struc_mask)
|
277 |
+
|
278 |
+
structure_embs = torch.stack(structure_embs, dim=0).to(
|
279 |
+
device=next(self.attn_pool.parameters()).device,
|
280 |
+
dtype=next(self.attn_pool.parameters()).dtype)
|
281 |
+
structure_mask = torch.stack(structure_mask, dim=0).to(
|
282 |
+
device=next(self.attn_pool.parameters()).device)
|
283 |
+
|
284 |
+
return self({
|
285 |
+
'encoder_out': structure_embs,
|
286 |
+
'encoder_padding_mask': structure_mask
|
287 |
+
})
|
tokenization_iPLM.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
from transformers import PreTrainedTokenizerFast
|
3 |
+
from tokenizers.processors import TemplateProcessing
|
4 |
+
from tokenizers import Tokenizer
|
5 |
+
from transformers.tokenization_utils_base import BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TruncationStrategy
|
6 |
+
from transformers.utils import PaddingStrategy, TensorType
|
7 |
+
import torch
|
8 |
+
|
9 |
+
def create_tokenizer_custom(file):
|
10 |
+
with open(file, 'r') as f:
|
11 |
+
return Tokenizer.from_str(f.read())
|
12 |
+
|
13 |
+
|
14 |
+
class iPLMTokenizer(PreTrainedTokenizerFast):
|
15 |
+
def __init__(self, n_queries, use_structure=True, parallel=False, **kwargs):
|
16 |
+
super().__init__(tokenizer_object=create_tokenizer_custom(kwargs.get('tokenizer_file')), **kwargs)
|
17 |
+
self.add_special_tokens({'pad_token': '<|pad|>'})
|
18 |
+
self.use_structure = use_structure
|
19 |
+
self.n_queries = n_queries if use_structure else 0
|
20 |
+
self.parallel = parallel
|
21 |
+
def __call__(
|
22 |
+
self,
|
23 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
24 |
+
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
25 |
+
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
26 |
+
text_pair_target: Optional[
|
27 |
+
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
28 |
+
] = None,
|
29 |
+
add_special_tokens: bool = True,
|
30 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
31 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
32 |
+
max_length: Optional[int] = None,
|
33 |
+
stride: int = 0,
|
34 |
+
is_split_into_words: bool = False,
|
35 |
+
pad_to_multiple_of: Optional[int] = None,
|
36 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
37 |
+
return_token_type_ids: Optional[bool] = None,
|
38 |
+
return_attention_mask: Optional[bool] = None,
|
39 |
+
return_overflowing_tokens: bool = False,
|
40 |
+
return_special_tokens_mask: bool = False,
|
41 |
+
return_offsets_mapping: bool = False,
|
42 |
+
return_length: bool = False,
|
43 |
+
verbose: bool = True,
|
44 |
+
**kwargs,
|
45 |
+
) -> BatchEncoding:
|
46 |
+
|
47 |
+
raw_text = []
|
48 |
+
|
49 |
+
if not isinstance(text, list):
|
50 |
+
text = [text]
|
51 |
+
|
52 |
+
if self.use_structure:
|
53 |
+
attn_mask_prefix = torch.zeros((len(text), self.n_queries), dtype=bool)
|
54 |
+
input_ids_prefix = torch.zeros((len(text), self.n_queries), dtype=int)
|
55 |
+
|
56 |
+
for i in range(len(text)):
|
57 |
+
if '|' in text[i]:
|
58 |
+
|
59 |
+
res = text[i].split('|')
|
60 |
+
raw_text.append(res[1])
|
61 |
+
|
62 |
+
if self.use_structure:
|
63 |
+
# covert and pad structure id to ascii
|
64 |
+
structure_id = torch.tensor([ord(c) for c in res[0]])
|
65 |
+
input_ids_prefix[i, :len(structure_id)] = structure_id
|
66 |
+
|
67 |
+
attn_mask_prefix[i] = True
|
68 |
+
else:
|
69 |
+
raw_text.append(text)
|
70 |
+
|
71 |
+
batch = super().__call__(raw_text, text_pair, text_target, text_pair_target, add_special_tokens, padding, truncation, max_length, stride, is_split_into_words, pad_to_multiple_of, return_tensors, return_token_type_ids, return_attention_mask, return_overflowing_tokens, return_special_tokens_mask, return_offsets_mapping, return_length, verbose, **kwargs)
|
72 |
+
|
73 |
+
if self.use_structure:
|
74 |
+
batch['attention_mask'] = torch.cat([attn_mask_prefix, batch['attention_mask']], dim=1)
|
75 |
+
batch['input_ids'] = torch.cat([input_ids_prefix, batch['input_ids']], dim=1)
|
76 |
+
|
77 |
+
if "token_type_ids" in batch:
|
78 |
+
del batch["token_type_ids"]
|
79 |
+
|
80 |
+
return batch
|
tokenizer.json
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "<|pad|>",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"id": 1,
|
17 |
+
"content": "<|bos|>",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": 2,
|
26 |
+
"content": "<|eos|>",
|
27 |
+
"single_word": false,
|
28 |
+
"lstrip": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"special": true
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"normalizer": null,
|
35 |
+
"pre_tokenizer": {
|
36 |
+
"type": "ByteLevel",
|
37 |
+
"add_prefix_space": false,
|
38 |
+
"trim_offsets": true,
|
39 |
+
"use_regex": true
|
40 |
+
},
|
41 |
+
"post_processor": {
|
42 |
+
"type": "ByteLevel",
|
43 |
+
"add_prefix_space": true,
|
44 |
+
"trim_offsets": true,
|
45 |
+
"use_regex": true
|
46 |
+
},
|
47 |
+
"decoder": {
|
48 |
+
"type": "ByteLevel",
|
49 |
+
"add_prefix_space": true,
|
50 |
+
"trim_offsets": true,
|
51 |
+
"use_regex": true
|
52 |
+
},
|
53 |
+
"model": {
|
54 |
+
"type": "BPE",
|
55 |
+
"dropout": null,
|
56 |
+
"unk_token": null,
|
57 |
+
"continuing_subword_prefix": null,
|
58 |
+
"end_of_word_suffix": null,
|
59 |
+
"fuse_unk": false,
|
60 |
+
"byte_fallback": false,
|
61 |
+
"vocab": {
|
62 |
+
"<|pad|>": 0,
|
63 |
+
"<|bos|>": 1,
|
64 |
+
"<|eos|>": 2,
|
65 |
+
"1": 3,
|
66 |
+
"2": 4,
|
67 |
+
"A": 5,
|
68 |
+
"B": 6,
|
69 |
+
"C": 7,
|
70 |
+
"D": 8,
|
71 |
+
"E": 9,
|
72 |
+
"F": 10,
|
73 |
+
"G": 11,
|
74 |
+
"H": 12,
|
75 |
+
"I": 13,
|
76 |
+
"K": 14,
|
77 |
+
"L": 15,
|
78 |
+
"M": 16,
|
79 |
+
"N": 17,
|
80 |
+
"O": 18,
|
81 |
+
"P": 19,
|
82 |
+
"Q": 20,
|
83 |
+
"R": 21,
|
84 |
+
"S": 22,
|
85 |
+
"T": 23,
|
86 |
+
"U": 24,
|
87 |
+
"V": 25,
|
88 |
+
"W": 26,
|
89 |
+
"X": 27,
|
90 |
+
"Y": 28,
|
91 |
+
"Z": 29
|
92 |
+
},
|
93 |
+
"merges": []
|
94 |
+
}
|
95 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"n_queries": 256,
|
3 |
+
"use_structure": true,
|
4 |
+
"tokenizer_class": "iPLMTokenizer",
|
5 |
+
"auto_map": {
|
6 |
+
"AutoTokenizer": [
|
7 |
+
"tokenization_iPLM.iPLMTokenizer",
|
8 |
+
null
|
9 |
+
]
|
10 |
+
}
|
11 |
+
}
|