roberta-base-mrpc / README.md
xinhe's picture
Add evaluation results on the mrpc config of glue (#1)
2e8bda0
|
raw
history blame
2.22 kB
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8774509803921569
- name: F1
type: f1
value: 0.9137931034482758
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: train
metrics:
- name: Accuracy
type: accuracy
value: 0.979825517993457
verified: true
- name: Precision
type: precision
value: 0.9842615012106537
verified: true
- name: Recall
type: recall
value: 0.9858528698464026
verified: true
- name: AUC
type: auc
value: 0.9958293217637636
verified: true
- name: F1
type: f1
value: 0.9850565428109854
verified: true
- name: loss
type: loss
value: 0.08004990220069885
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-mrpc
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5565
- Accuracy: 0.8775
- F1: 0.9138
- Combined Score: 0.8956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6