Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.81 +/- 0.38
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5de17d231e0c77b1bd6b25115502de159a07b72a651a6dcbf5e4b6857591eb82
|
3 |
+
size 109668
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,24 +43,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVLwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5447b31280>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f5447b2f390>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 2000000,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1682396638101266751,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVLwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAimSXP+V52D8h/0i/YYGFP5jtrb+gSp4+PgjUv9zICT8oIL8/v8YkP+fXkL6FE+2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABQm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]]",
|
62 |
+
"desired_goal": "[[ 1.1827557 1.6912199 -0.78514296]\n [ 1.0430108 -1.3588133 0.3091631 ]\n [-1.6565015 0.5382211 1.4931688 ]\n [ 0.6436576 -0.2828972 -0.46303955]]",
|
63 |
+
"observation": "[[0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaHDsvT93iL1rcbI8ouwIvlbp2z09Ak4+JEKNvVIcwDw2aBA+ddoOPf+W9r3a2Gw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.11544877 -0.06663369 0.0217826 ]\n [-0.13371518 0.10737865 0.20118041]\n [-0.06897381 0.023451 0.14102253]\n [ 0.03487631 -0.12040519 0.23129597]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhXr6CPzh5r+UhpRSlIwBbJRLMowBdJRHQKpqR9ORDCx1fZQoaAZoCWgPQwipMLYQ5KDQv5SGlFKUaBVLMmgWR0CqaiSYG+sYdX2UKGgGaAloD0MIf6ZetwjM87+UhpRSlGgVSzJoFkdAqmn5Jul41XV9lChoBmgJaA9DCJPJqZ1h6ua/lIaUUpRoFUsyaBZHQKpp1bJOnEV1fZQoaAZoCWgPQwgo1NNH4I/gv5SGlFKUaBVLMmgWR0CqavffoA4odX2UKGgGaAloD0MI0vwxrU1j7b+UhpRSlGgVSzJoFkdAqmrU0tRNy3V9lChoBmgJaA9DCGk1JO6xdOi/lIaUUpRoFUsyaBZHQKpqqU3XI2h1fZQoaAZoCWgPQwgR/dr66T/rv5SGlFKUaBVLMmgWR0CqaoXjENvwdX2UKGgGaAloD0MItLCnHf7a87+UhpRSlGgVSzJoFkdAqmumf029+XV9lChoBmgJaA9DCG9iSE4m7um/lIaUUpRoFUsyaBZHQKprg1/lQuV1fZQoaAZoCWgPQwgfMXpuoSvPv5SGlFKUaBVLMmgWR0Cqa1fJvHcUdX2UKGgGaAloD0MItmgB2laz27+UhpRSlGgVSzJoFkdAqms0WhysCHV9lChoBmgJaA9DCGXHRiBe1+u/lIaUUpRoFUsyaBZHQKpsUhakhzN1fZQoaAZoCWgPQwiIvVDAdrDgv5SGlFKUaBVLMmgWR0CqbC7xVhkRdX2UKGgGaAloD0MIS8yzklZ827+UhpRSlGgVSzJoFkdAqmwDSw4bTHV9lChoBmgJaA9DCFt8CoDxjOO/lIaUUpRoFUsyaBZHQKpr378ejmF1fZQoaAZoCWgPQwiyLm6jATzwv5SGlFKUaBVLMmgWR0CqbP6wUxmDdX2UKGgGaAloD0MItRt9zAcE7b+UhpRSlGgVSzJoFkdAqmzbd8Aq/nV9lChoBmgJaA9DCH7H8NjP4uK/lIaUUpRoFUsyaBZHQKpsr/o7muF1fZQoaAZoCWgPQwhMpgpGJXXrv5SGlFKUaBVLMmgWR0CqbIyMtK7JdX2UKGgGaAloD0MIN92yQ/yD8b+UhpRSlGgVSzJoFkdAqm2wSteUp3V9lChoBmgJaA9DCNXnaiv2l+6/lIaUUpRoFUsyaBZHQKptjTl1bJR1fZQoaAZoCWgPQwgu51JcVfbev5SGlFKUaBVLMmgWR0CqbWG8EmpmdX2UKGgGaAloD0MIJ7wEpz4Q97+UhpRSlGgVSzJoFkdAqm0+R1X/53V9lChoBmgJaA9DCEI/U69bhOG/lIaUUpRoFUsyaBZHQKpuXHKfWc11fZQoaAZoCWgPQwgRyCWOPBDZv5SGlFKUaBVLMmgWR0Cqbjk/r0J4dX2UKGgGaAloD0MISrclcsEZ77+UhpRSlGgVSzJoFkdAqm4NuivgWXV9lChoBmgJaA9DCH1aRX9o5ti/lIaUUpRoFUsyaBZHQKpt6jps41h1fZQoaAZoCWgPQwggt18+WbHkv5SGlFKUaBVLMmgWR0Cqbwh2fTTfdX2UKGgGaAloD0MIYADhQ4mW57+UhpRSlGgVSzJoFkdAqm7lVYISlHV9lChoBmgJaA9DCFMJT+j1p+G/lIaUUpRoFUsyaBZHQKpuueDnNgV1fZQoaAZoCWgPQwjqeTcWFAbbv5SGlFKUaBVLMmgWR0CqbpZVOsT4dX2UKGgGaAloD0MIrkoi+yBL6r+UhpRSlGgVSzJoFkdAqm+yr/82rHV9lChoBmgJaA9DCK4tPC8VG9u/lIaUUpRoFUsyaBZHQKpvj49ovi91fZQoaAZoCWgPQwgAdQMF3snjv5SGlFKUaBVLMmgWR0Cqb2PphWo4dX2UKGgGaAloD0MIJT0MrU5O7b+UhpRSlGgVSzJoFkdAqm9Ac/+sHXV9lChoBmgJaA9DCMCxZ89l6vK/lIaUUpRoFUsyaBZHQKpwXV/+bVl1fZQoaAZoCWgPQwjrNxPThVjcv5SGlFKUaBVLMmgWR0CqcDpKraM8dX2UKGgGaAloD0MIWyTtRh/z6b+UhpRSlGgVSzJoFkdAqnAO0eEIxHV9lChoBmgJaA9DCGVVhJuMqve/lIaUUpRoFUsyaBZHQKpv61zhgmZ1fZQoaAZoCWgPQwjZW8r5Yu/hv5SGlFKUaBVLMmgWR0CqcRKCxu89dX2UKGgGaAloD0MIkSkfgqpR5b+UhpRSlGgVSzJoFkdAqnDvZM+NcXV9lChoBmgJaA9DCO4JEtvdg/G/lIaUUpRoFUsyaBZHQKpww/B3zMB1fZQoaAZoCWgPQwj20akrn+Xev5SGlFKUaBVLMmgWR0CqcKCFsYVJdX2UKGgGaAloD0MI1xTI7Cx667+UhpRSlGgVSzJoFkdAqnHCGpMpPXV9lChoBmgJaA9DCMxG5/wUx+u/lIaUUpRoFUsyaBZHQKpxnv73wkR1fZQoaAZoCWgPQwjvHqD7cmbTv5SGlFKUaBVLMmgWR0CqcXOIhyKfdX2UKGgGaAloD0MI2gHXFTPC7L+UhpRSlGgVSzJoFkdAqnFQLXtjTnV9lChoBmgJaA9DCM4Y5gRt8uO/lIaUUpRoFUsyaBZHQKpydK4hEBt1fZQoaAZoCWgPQwiw4lRrYZblv5SGlFKUaBVLMmgWR0CqclF/YraudX2UKGgGaAloD0MIsf1kjA9z87+UhpRSlGgVSzJoFkdAqnIl7F85S3V9lChoBmgJaA9DCB6NQ/0ubNu/lIaUUpRoFUsyaBZHQKpyAmoBJZp1fZQoaAZoCWgPQwg98DFYcarav5SGlFKUaBVLMmgWR0CqcyPoePq+dX2UKGgGaAloD0MIfQOTG0VW6b+UhpRSlGgVSzJoFkdAqnMAz7/GVHV9lChoBmgJaA9DCErs2t5uSee/lIaUUpRoFUsyaBZHQKpy1WI42jx1fZQoaAZoCWgPQwgnwRvSqMDgv5SGlFKUaBVLMmgWR0CqcrHlXA/LdX2UKGgGaAloD0MIE7afjPFh5r+UhpRSlGgVSzJoFkdAqnPQeNkvsnV9lChoBmgJaA9DCOcYkL3e/eS/lIaUUpRoFUsyaBZHQKpzrWuHN5d1fZQoaAZoCWgPQwjrjzAMWHLcv5SGlFKUaBVLMmgWR0Cqc4H8baRIdX2UKGgGaAloD0MIbeaQ1ELJ17+UhpRSlGgVSzJoFkdAqnNecJ+lTHV9lChoBmgJaA9DCFQ4glSKneG/lIaUUpRoFUsyaBZHQKp0hTIeYD11fZQoaAZoCWgPQwgLXYlA9Q/bv5SGlFKUaBVLMmgWR0CqdGIJZ4fPdX2UKGgGaAloD0MIYVJ8fEL24b+UhpRSlGgVSzJoFkdAqnQ2lXRw63V9lChoBmgJaA9DCOD0Lt6PW+u/lIaUUpRoFUsyaBZHQKp0EyAQQMB1fZQoaAZoCWgPQwi8ehUZHRDgv5SGlFKUaBVLMmgWR0CqdTqDK5kLdX2UKGgGaAloD0MIR8uBHmpb4L+UhpRSlGgVSzJoFkdAqnUXYYixFHV9lChoBmgJaA9DCFBu2/eoP+a/lIaUUpRoFUsyaBZHQKp07D1oQFt1fZQoaAZoCWgPQwgf1hu1wvTpv5SGlFKUaBVLMmgWR0CqdMiZF5OadX2UKGgGaAloD0MIEaYol8Yv0r+UhpRSlGgVSzJoFkdAqnXqsMiKSHV9lChoBmgJaA9DCAWHF0SkpvG/lIaUUpRoFUsyaBZHQKp1x39JjDt1fZQoaAZoCWgPQwiKHvgYrDjZv5SGlFKUaBVLMmgWR0CqdZwLE1l5dX2UKGgGaAloD0MIfCjRksdT47+UhpRSlGgVSzJoFkdAqnV4mAskIHV9lChoBmgJaA9DCLvs153uPOG/lIaUUpRoFUsyaBZHQKp2n2QGOdZ1fZQoaAZoCWgPQwhnf6Dcti/wv5SGlFKUaBVLMmgWR0CqdnxKYiPidX2UKGgGaAloD0MIeCl1yThGyL+UhpRSlGgVSzJoFkdAqnZQ0oBq9HV9lChoBmgJaA9DCOrKZ3ke3OK/lIaUUpRoFUsyaBZHQKp2LWXkYGd1fZQoaAZoCWgPQwhprP2d7dHuv5SGlFKUaBVLMmgWR0Cqd03Y150KdX2UKGgGaAloD0MIldIzvcTY4L+UhpRSlGgVSzJoFkdAqncqu+yquXV9lChoBmgJaA9DCNzxJr9FJ+a/lIaUUpRoFUsyaBZHQKp2/y3CsOp1fZQoaAZoCWgPQwhY4gFlU67uv5SGlFKUaBVLMmgWR0CqdtuuzQeFdX2UKGgGaAloD0MIo+nsZHCU1L+UhpRSlGgVSzJoFkdAqnf6QRwqAnV9lChoBmgJaA9DCOPg0jHnGeC/lIaUUpRoFUsyaBZHQKp31y6tknV1fZQoaAZoCWgPQwiBzTl4JjTRv5SGlFKUaBVLMmgWR0Cqd6u63AmBdX2UKGgGaAloD0MIUmLX9nbL4b+UhpRSlGgVSzJoFkdAqneIVuaWonV9lChoBmgJaA9DCMjvbfqzn+a/lIaUUpRoFUsyaBZHQKp4q/QjUut1fZQoaAZoCWgPQwjAQXv18VDhv5SGlFKUaBVLMmgWR0CqeIjnNgSfdX2UKGgGaAloD0MIlPsdigL95L+UhpRSlGgVSzJoFkdAqnhdfVqesnV9lChoBmgJaA9DCF4sDJHTV+O/lIaUUpRoFUsyaBZHQKp4OgsbvPV1fZQoaAZoCWgPQwhlcmpnmNq+v5SGlFKUaBVLMmgWR0CqeVnHeaa1dX2UKGgGaAloD0MIguLHmLsW4r+UhpRSlGgVSzJoFkdAqnk2pqASWnV9lChoBmgJaA9DCGxDxTh/E/C/lIaUUpRoFUsyaBZHQKp5CyfthNN1fZQoaAZoCWgPQwgfhetRuJ7gv5SGlFKUaBVLMmgWR0CqeOexwAEMdX2UKGgGaAloD0MIO29jsyPV67+UhpRSlGgVSzJoFkdAqnoPC66J7HV9lChoBmgJaA9DCNmY1xGHrPG/lIaUUpRoFUsyaBZHQKp56/HHWBl1fZQoaAZoCWgPQwh3vTRFgFPsv5SGlFKUaBVLMmgWR0CqecB3qzJIdX2UKGgGaAloD0MI7NrebkmO4r+UhpRSlGgVSzJoFkdAqnmdBdD6WXV9lChoBmgJaA9DCKweMA+ZMvO/lIaUUpRoFUsyaBZHQKp6vGG21D11fZQoaAZoCWgPQwgkRs8tdCXhv5SGlFKUaBVLMmgWR0CqeplF+d9VdX2UKGgGaAloD0MIoWRyameY7L+UhpRSlGgVSzJoFkdAqnptpmEoOXV9lChoBmgJaA9DCDiB6bRug+q/lIaUUpRoFUsyaBZHQKp6SjASFoN1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 62500,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f176bb2c588b547a359ce58eebb2fcf5b0ebd952545df5ae15dd2627cddbaa4
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ca4eb8cb4a839575bad0072bc399e86a1b734c4348b89b5fbba018ad1149fe5
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7ae76f3d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7ae7705b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682392265569970509, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVLwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3arUPmREzzloYg0/3arUPmREzzloYg0/3arUPmREzzloYg0/3arUPmREzzloYg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYM3qvXHjbr6nnz8/4Z2Qv1SmUj8FBCy/14FNP8t6uj/blrm/8x2dP5Kd+r1aI4q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADdqtQ+ZETPOWhiDT9/+8y4k+wruxd4ULrdqtQ+ZETPOWhiDT9/+8y4k+wruxd4ULrdqtQ+ZETPOWhiDT9/+8y4k+wruxd4ULrdqtQ+ZETPOWhiDT9/+8y4k+wruxd4ULqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[4.1536608e-01 3.9533072e-04 5.5228281e-01]\n [4.1536608e-01 3.9533072e-04 5.5228281e-01]\n [4.1536608e-01 3.9533072e-04 5.5228281e-01]\n [4.1536608e-01 3.9533072e-04 5.5228281e-01]]", "desired_goal": "[[-0.11464953 -0.2332895 0.74852985]\n [-1.1298181 0.82285047 -0.67193633]\n [ 0.80276245 1.4568723 -1.4499162 ]\n [ 1.2274765 -0.12237085 -1.0792038 ]]", "observation": "[[ 4.1536608e-01 3.9533072e-04 5.5228281e-01 -9.7743228e-05\n -2.6233539e-03 -7.9524651e-04]\n [ 4.1536608e-01 3.9533072e-04 5.5228281e-01 -9.7743228e-05\n -2.6233539e-03 -7.9524651e-04]\n [ 4.1536608e-01 3.9533072e-04 5.5228281e-01 -9.7743228e-05\n -2.6233539e-03 -7.9524651e-04]\n [ 4.1536608e-01 3.9533072e-04 5.5228281e-01 -9.7743228e-05\n -2.6233539e-03 -7.9524651e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqqmUvLocJztMk1I+1AXKvZFzdb0FlUk9LlhSvG+ytr0KLbw96vXPvXDUeD2i/mk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01814731 0.00254993 0.20564002]\n [-0.09864393 -0.05992467 0.04921438]\n [-0.01283841 -0.08920752 0.09188278]\n [-0.10154326 0.06074947 0.0571276 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsOjWa3pQ9r+UhpRSlIwBbJRLMowBdJRHQJrjv1Iy0rt1fZQoaAZoCWgPQwgsuYrFb0r5v5SGlFKUaBVLMmgWR0Ca43T0QK8ddX2UKGgGaAloD0MIsYnMXOAy8b+UhpRSlGgVSzJoFkdAmuMnqu8sc3V9lChoBmgJaA9DCPyKNVzkXvy/lIaUUpRoFUsyaBZHQJri3d8Aq/d1fZQoaAZoCWgPQwjJVpdTAiL3v5SGlFKUaBVLMmgWR0Ca5NibDuSfdX2UKGgGaAloD0MIipKQSNtYAMCUhpRSlGgVSzJoFkdAmuSOPNmlInV9lChoBmgJaA9DCA6+MJkqmP2/lIaUUpRoFUsyaBZHQJrkQNz8xbl1fZQoaAZoCWgPQwhnR6rv/CL8v5SGlFKUaBVLMmgWR0Ca4/b5uZTidX2UKGgGaAloD0MIBf2FHjH6/L+UhpRSlGgVSzJoFkdAmuYB6fJ3gXV9lChoBmgJaA9DCOFgb2JIDvu/lIaUUpRoFUsyaBZHQJrlt32VVxV1fZQoaAZoCWgPQwiWl/xP/u71v5SGlFKUaBVLMmgWR0Ca5WoYekpJdX2UKGgGaAloD0MI1ZXP8jwYAsCUhpRSlGgVSzJoFkdAmuUgTIvJzXV9lChoBmgJaA9DCCR7hJoh1QTAlIaUUpRoFUsyaBZHQJrnDrgOz6d1fZQoaAZoCWgPQwjB49u7Br39v5SGlFKUaBVLMmgWR0Ca5sRTS9dvdX2UKGgGaAloD0MIVObmG9F9+b+UhpRSlGgVSzJoFkdAmuZ27e2uxXV9lChoBmgJaA9DCCL99nXgHADAlIaUUpRoFUsyaBZHQJrmLQ/oq1B1fZQoaAZoCWgPQwj9LmzNVt7/v5SGlFKUaBVLMmgWR0Ca6CZmI0qIdX2UKGgGaAloD0MIHCYapODp/b+UhpRSlGgVSzJoFkdAmufcBhhH9XV9lChoBmgJaA9DCFD7rZ0oifi/lIaUUpRoFUsyaBZHQJrnjsAvL5h1fZQoaAZoCWgPQwj+DkWBPpH+v5SGlFKUaBVLMmgWR0Ca50TVlPJrdX2UKGgGaAloD0MIWRgip6+n+L+UhpRSlGgVSzJoFkdAmulQ2VE/jnV9lChoBmgJaA9DCMcPlUbMrP2/lIaUUpRoFUsyaBZHQJrpBnoPkJd1fZQoaAZoCWgPQwjXFwltOVcCwJSGlFKUaBVLMmgWR0Ca6LkAggX/dX2UKGgGaAloD0MIf4gNFk5S+7+UhpRSlGgVSzJoFkdAmuhvdEb5unV9lChoBmgJaA9DCMe9+Q0Tjfu/lIaUUpRoFUsyaBZHQJrqZJXhfjV1fZQoaAZoCWgPQwgEdF/ObNf+v5SGlFKUaBVLMmgWR0Ca6hosI3R5dX2UKGgGaAloD0MIiUM2kC42BMCUhpRSlGgVSzJoFkdAmunM2zfJm3V9lChoBmgJaA9DCK+196kq1AHAlIaUUpRoFUsyaBZHQJrpgvkBCD51fZQoaAZoCWgPQwj8HYoCfUICwJSGlFKUaBVLMmgWR0Ca63llbu+idX2UKGgGaAloD0MIeZRKeEIv/L+UhpRSlGgVSzJoFkdAmusvStvGZXV9lChoBmgJaA9DCNLlzeFarfW/lIaUUpRoFUsyaBZHQJrq4eA/cFh1fZQoaAZoCWgPQwh1PjxLkJEBwJSGlFKUaBVLMmgWR0Ca6pfv4M4MdX2UKGgGaAloD0MIyZI5lncV/b+UhpRSlGgVSzJoFkdAmuyeJcgQpXV9lChoBmgJaA9DCDiDv1/MFv+/lIaUUpRoFUsyaBZHQJrsU85jpcJ1fZQoaAZoCWgPQwhzf/W4b7X0v5SGlFKUaBVLMmgWR0Ca7AZvkzXSdX2UKGgGaAloD0MI2liJeVbyAMCUhpRSlGgVSzJoFkdAmuu8xj8UEnV9lChoBmgJaA9DCNKowMk2cPq/lIaUUpRoFUsyaBZHQJrttW3jMmp1fZQoaAZoCWgPQwigTnl0I6zrv5SGlFKUaBVLMmgWR0Ca7WsabWmQdX2UKGgGaAloD0MIkPXU6qvrAsCUhpRSlGgVSzJoFkdAmu0drTH80nV9lChoBmgJaA9DCK98lufBPQHAlIaUUpRoFUsyaBZHQJrs1A3T/hl1fZQoaAZoCWgPQwj59q5BX5oFwJSGlFKUaBVLMmgWR0Ca7tN/e+EidX2UKGgGaAloD0MIR1Z+GYyxAsCUhpRSlGgVSzJoFkdAmu6JHI6sAHV9lChoBmgJaA9DCFiut81U6AfAlIaUUpRoFUsyaBZHQJruO7Ciypt1fZQoaAZoCWgPQwi4WFGDaRgJwJSGlFKUaBVLMmgWR0Ca7fHLRrrPdX2UKGgGaAloD0MIahfTTPc6BcCUhpRSlGgVSzJoFkdAmu/yaJAMUnV9lChoBmgJaA9DCBuC4zJuKv+/lIaUUpRoFUsyaBZHQJrvqDEm6Xl1fZQoaAZoCWgPQwivtIzUe0oFwJSGlFKUaBVLMmgWR0Ca71rp7kXDdX2UKGgGaAloD0MIK6T8pNrn+b+UhpRSlGgVSzJoFkdAmu8REroW6HV9lChoBmgJaA9DCMHJNnAH6v+/lIaUUpRoFUsyaBZHQJrxDN/vv0B1fZQoaAZoCWgPQwgMsI9OXbkJwJSGlFKUaBVLMmgWR0Ca8MK1G9YfdX2UKGgGaAloD0MIJjrLLEIRAsCUhpRSlGgVSzJoFkdAmvB1VLi++XV9lChoBmgJaA9DCA5ORL+2HgDAlIaUUpRoFUsyaBZHQJrwK3nZCfJ1fZQoaAZoCWgPQwjgu80bJ8UFwJSGlFKUaBVLMmgWR0Ca8ij7ALy+dX2UKGgGaAloD0MI2Ls/3qsWC8CUhpRSlGgVSzJoFkdAmvHepS75EnV9lChoBmgJaA9DCBizJasinAXAlIaUUpRoFUsyaBZHQJrxkUsWfsh1fZQoaAZoCWgPQwgjTbwDPGn3v5SGlFKUaBVLMmgWR0Ca8UdoWYWtdX2UKGgGaAloD0MISu8bX3vmC8CUhpRSlGgVSzJoFkdAmvNBMFlkH3V9lChoBmgJaA9DCFKdDmQ9FQXAlIaUUpRoFUsyaBZHQJry9s+FDfF1fZQoaAZoCWgPQwiHNgAbEGEBwJSGlFKUaBVLMmgWR0Ca8qlqJuVHdX2UKGgGaAloD0MIu3zrw3oj/L+UhpRSlGgVSzJoFkdAmvJfhqCYkXV9lChoBmgJaA9DCCk/qfbpmAPAlIaUUpRoFUsyaBZHQJr0YqZtvXN1fZQoaAZoCWgPQwh23sZmR0oCwJSGlFKUaBVLMmgWR0Ca9BhLGrCFdX2UKGgGaAloD0MI88ZJYd5j/L+UhpRSlGgVSzJoFkdAmvPK5byH23V9lChoBmgJaA9DCGfROxVwT/2/lIaUUpRoFUsyaBZHQJrzgQd0aIh1fZQoaAZoCWgPQwhCI9i4/h0NwJSGlFKUaBVLMmgWR0Ca9XeHzpX7dX2UKGgGaAloD0MICDnv/+MkCMCUhpRSlGgVSzJoFkdAmvUtK28Zk3V9lChoBmgJaA9DCBUaiGUzJwXAlIaUUpRoFUsyaBZHQJr037SApa11fZQoaAZoCWgPQwiTVKaYg2AGwJSGlFKUaBVLMmgWR0Ca9JXA/LTydX2UKGgGaAloD0MIhA66hEPvEsCUhpRSlGgVSzJoFkdAmvaTPrv9cnV9lChoBmgJaA9DCCB+/nvwOgLAlIaUUpRoFUsyaBZHQJr2SPgeii91fZQoaAZoCWgPQwj7kSIyrMIRwJSGlFKUaBVLMmgWR0Ca9fu8K5TZdX2UKGgGaAloD0MI9zk+Wpxx/r+UhpRSlGgVSzJoFkdAmvWx2St/4XV9lChoBmgJaA9DCIqO5PIfEvi/lIaUUpRoFUsyaBZHQJr3s0TDfm91fZQoaAZoCWgPQwisGRnkLkL/v5SGlFKUaBVLMmgWR0Ca92jvuw5edX2UKGgGaAloD0MIborHRbWoAsCUhpRSlGgVSzJoFkdAmvcbgXMyJ3V9lChoBmgJaA9DCGNkyRzLuw/AlIaUUpRoFUsyaBZHQJr20al1r7B1fZQoaAZoCWgPQwit+lxtxf4CwJSGlFKUaBVLMmgWR0Ca+NQK8cuKdX2UKGgGaAloD0MIK4iBrn2BAcCUhpRSlGgVSzJoFkdAmviJoTPBznV9lChoBmgJaA9DCE88ZwsIzQDAlIaUUpRoFUsyaBZHQJr4PDaXa8J1fZQoaAZoCWgPQwh4YWu28tIGwJSGlFKUaBVLMmgWR0Ca9/Jhvze5dX2UKGgGaAloD0MImYI1zqZjCcCUhpRSlGgVSzJoFkdAmvnsmrsByXV9lChoBmgJaA9DCD6veOqRpg7AlIaUUpRoFUsyaBZHQJr5okqtozx1fZQoaAZoCWgPQwhTy9b6ImENwJSGlFKUaBVLMmgWR0Ca+VUKRdQgdX2UKGgGaAloD0MI48KBkCzACMCUhpRSlGgVSzJoFkdAmvkLpiZv1nV9lChoBmgJaA9DCD7nbtdLswrAlIaUUpRoFUsyaBZHQJr7Dj1f3N91fZQoaAZoCWgPQwgqqn6l88EBwJSGlFKUaBVLMmgWR0Ca+sRqGlANdX2UKGgGaAloD0MIGM3K9iEPFcCUhpRSlGgVSzJoFkdAmvp29+PRzHV9lChoBmgJaA9DCKzijcwjfwDAlIaUUpRoFUsyaBZHQJr6Lbfxc3V1fZQoaAZoCWgPQwinlUIglzgHwJSGlFKUaBVLMmgWR0Ca/CNUfgaWdX2UKGgGaAloD0MIpIy4ADTqAsCUhpRSlGgVSzJoFkdAmvvY9HMEBHV9lChoBmgJaA9DCGr11VWBGgbAlIaUUpRoFUsyaBZHQJr7i8ujASF1fZQoaAZoCWgPQwje40wTtr8GwJSGlFKUaBVLMmgWR0Ca+0HbRF7VdX2UKGgGaAloD0MIIUCGjh00CMCUhpRSlGgVSzJoFkdAmv1IwEhaDHV9lChoBmgJaA9DCCtsBrgg2xDAlIaUUpRoFUsyaBZHQJr8/nX/YJ51fZQoaAZoCWgPQwgr3V1nQx4CwJSGlFKUaBVLMmgWR0Ca/LEs8PnTdX2UKGgGaAloD0MIMKAX7lyYAcCUhpRSlGgVSzJoFkdAmvxnXmNipnV9lChoBmgJaA9DCMwKRbqf0wDAlIaUUpRoFUsyaBZHQJr+dLVWjoJ1fZQoaAZoCWgPQwjQJRx6iwcIwJSGlFKUaBVLMmgWR0Ca/irI5o4/dX2UKGgGaAloD0MIa0QwDi69EsCUhpRSlGgVSzJoFkdAmv3dx2jfvXV9lChoBmgJaA9DCPZ698d7dQDAlIaUUpRoFUsyaBZHQJr9lFocrAh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.29 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a9", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5447b31280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5447b2f390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682396638101266751, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVLwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfi9ob21lL2lzYWFjL0RvY3VtZW50cy9yZXNlYXJjaC9SZWluZm9yY2VtZW50LUxlYXJuaW5nL0hEUkwvLnZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/UJvdPsfOdjtAJg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAimSXP+V52D8h/0i/YYGFP5jtrb+gSp4+PgjUv9zICT8oIL8/v8YkP+fXkL6FE+2+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABQm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT1Qm90+x852O0AmDz/5m6w9UZZgOnwNjT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]\n [0.43282557 0.00376599 0.5591774 ]]", "desired_goal": "[[ 1.1827557 1.6912199 -0.78514296]\n [ 1.0430108 -1.3588133 0.3091631 ]\n [-1.6565015 0.5382211 1.4931688 ]\n [ 0.6436576 -0.2828972 -0.46303955]]", "observation": "[[0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]\n [0.43282557 0.00376599 0.5591774 0.08428187 0.00085673 0.06887338]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaHDsvT93iL1rcbI8ouwIvlbp2z09Ak4+JEKNvVIcwDw2aBA+ddoOPf+W9r3a2Gw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11544877 -0.06663369 0.0217826 ]\n [-0.13371518 0.10737865 0.20118041]\n [-0.06897381 0.023451 0.14102253]\n [ 0.03487631 -0.12040519 0.23129597]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhXr6CPzh5r+UhpRSlIwBbJRLMowBdJRHQKpqR9ORDCx1fZQoaAZoCWgPQwipMLYQ5KDQv5SGlFKUaBVLMmgWR0CqaiSYG+sYdX2UKGgGaAloD0MIf6ZetwjM87+UhpRSlGgVSzJoFkdAqmn5Jul41XV9lChoBmgJaA9DCJPJqZ1h6ua/lIaUUpRoFUsyaBZHQKpp1bJOnEV1fZQoaAZoCWgPQwgo1NNH4I/gv5SGlFKUaBVLMmgWR0CqavffoA4odX2UKGgGaAloD0MI0vwxrU1j7b+UhpRSlGgVSzJoFkdAqmrU0tRNy3V9lChoBmgJaA9DCGk1JO6xdOi/lIaUUpRoFUsyaBZHQKpqqU3XI2h1fZQoaAZoCWgPQwgR/dr66T/rv5SGlFKUaBVLMmgWR0CqaoXjENvwdX2UKGgGaAloD0MItLCnHf7a87+UhpRSlGgVSzJoFkdAqmumf029+XV9lChoBmgJaA9DCG9iSE4m7um/lIaUUpRoFUsyaBZHQKprg1/lQuV1fZQoaAZoCWgPQwgfMXpuoSvPv5SGlFKUaBVLMmgWR0Cqa1fJvHcUdX2UKGgGaAloD0MItmgB2laz27+UhpRSlGgVSzJoFkdAqms0WhysCHV9lChoBmgJaA9DCGXHRiBe1+u/lIaUUpRoFUsyaBZHQKpsUhakhzN1fZQoaAZoCWgPQwiIvVDAdrDgv5SGlFKUaBVLMmgWR0CqbC7xVhkRdX2UKGgGaAloD0MIS8yzklZ827+UhpRSlGgVSzJoFkdAqmwDSw4bTHV9lChoBmgJaA9DCFt8CoDxjOO/lIaUUpRoFUsyaBZHQKpr378ejmF1fZQoaAZoCWgPQwiyLm6jATzwv5SGlFKUaBVLMmgWR0CqbP6wUxmDdX2UKGgGaAloD0MItRt9zAcE7b+UhpRSlGgVSzJoFkdAqmzbd8Aq/nV9lChoBmgJaA9DCH7H8NjP4uK/lIaUUpRoFUsyaBZHQKpsr/o7muF1fZQoaAZoCWgPQwhMpgpGJXXrv5SGlFKUaBVLMmgWR0CqbIyMtK7JdX2UKGgGaAloD0MIN92yQ/yD8b+UhpRSlGgVSzJoFkdAqm2wSteUp3V9lChoBmgJaA9DCNXnaiv2l+6/lIaUUpRoFUsyaBZHQKptjTl1bJR1fZQoaAZoCWgPQwgu51JcVfbev5SGlFKUaBVLMmgWR0CqbWG8EmpmdX2UKGgGaAloD0MIJ7wEpz4Q97+UhpRSlGgVSzJoFkdAqm0+R1X/53V9lChoBmgJaA9DCEI/U69bhOG/lIaUUpRoFUsyaBZHQKpuXHKfWc11fZQoaAZoCWgPQwgRyCWOPBDZv5SGlFKUaBVLMmgWR0Cqbjk/r0J4dX2UKGgGaAloD0MISrclcsEZ77+UhpRSlGgVSzJoFkdAqm4NuivgWXV9lChoBmgJaA9DCH1aRX9o5ti/lIaUUpRoFUsyaBZHQKpt6jps41h1fZQoaAZoCWgPQwggt18+WbHkv5SGlFKUaBVLMmgWR0Cqbwh2fTTfdX2UKGgGaAloD0MIYADhQ4mW57+UhpRSlGgVSzJoFkdAqm7lVYISlHV9lChoBmgJaA9DCFMJT+j1p+G/lIaUUpRoFUsyaBZHQKpuueDnNgV1fZQoaAZoCWgPQwjqeTcWFAbbv5SGlFKUaBVLMmgWR0CqbpZVOsT4dX2UKGgGaAloD0MIrkoi+yBL6r+UhpRSlGgVSzJoFkdAqm+yr/82rHV9lChoBmgJaA9DCK4tPC8VG9u/lIaUUpRoFUsyaBZHQKpvj49ovi91fZQoaAZoCWgPQwgAdQMF3snjv5SGlFKUaBVLMmgWR0Cqb2PphWo4dX2UKGgGaAloD0MIJT0MrU5O7b+UhpRSlGgVSzJoFkdAqm9Ac/+sHXV9lChoBmgJaA9DCMCxZ89l6vK/lIaUUpRoFUsyaBZHQKpwXV/+bVl1fZQoaAZoCWgPQwjrNxPThVjcv5SGlFKUaBVLMmgWR0CqcDpKraM8dX2UKGgGaAloD0MIWyTtRh/z6b+UhpRSlGgVSzJoFkdAqnAO0eEIxHV9lChoBmgJaA9DCGVVhJuMqve/lIaUUpRoFUsyaBZHQKpv61zhgmZ1fZQoaAZoCWgPQwjZW8r5Yu/hv5SGlFKUaBVLMmgWR0CqcRKCxu89dX2UKGgGaAloD0MIkSkfgqpR5b+UhpRSlGgVSzJoFkdAqnDvZM+NcXV9lChoBmgJaA9DCO4JEtvdg/G/lIaUUpRoFUsyaBZHQKpww/B3zMB1fZQoaAZoCWgPQwj20akrn+Xev5SGlFKUaBVLMmgWR0CqcKCFsYVJdX2UKGgGaAloD0MI1xTI7Cx667+UhpRSlGgVSzJoFkdAqnHCGpMpPXV9lChoBmgJaA9DCMxG5/wUx+u/lIaUUpRoFUsyaBZHQKpxnv73wkR1fZQoaAZoCWgPQwjvHqD7cmbTv5SGlFKUaBVLMmgWR0CqcXOIhyKfdX2UKGgGaAloD0MI2gHXFTPC7L+UhpRSlGgVSzJoFkdAqnFQLXtjTnV9lChoBmgJaA9DCM4Y5gRt8uO/lIaUUpRoFUsyaBZHQKpydK4hEBt1fZQoaAZoCWgPQwiw4lRrYZblv5SGlFKUaBVLMmgWR0CqclF/YraudX2UKGgGaAloD0MIsf1kjA9z87+UhpRSlGgVSzJoFkdAqnIl7F85S3V9lChoBmgJaA9DCB6NQ/0ubNu/lIaUUpRoFUsyaBZHQKpyAmoBJZp1fZQoaAZoCWgPQwg98DFYcarav5SGlFKUaBVLMmgWR0CqcyPoePq+dX2UKGgGaAloD0MIfQOTG0VW6b+UhpRSlGgVSzJoFkdAqnMAz7/GVHV9lChoBmgJaA9DCErs2t5uSee/lIaUUpRoFUsyaBZHQKpy1WI42jx1fZQoaAZoCWgPQwgnwRvSqMDgv5SGlFKUaBVLMmgWR0CqcrHlXA/LdX2UKGgGaAloD0MIE7afjPFh5r+UhpRSlGgVSzJoFkdAqnPQeNkvsnV9lChoBmgJaA9DCOcYkL3e/eS/lIaUUpRoFUsyaBZHQKpzrWuHN5d1fZQoaAZoCWgPQwjrjzAMWHLcv5SGlFKUaBVLMmgWR0Cqc4H8baRIdX2UKGgGaAloD0MIbeaQ1ELJ17+UhpRSlGgVSzJoFkdAqnNecJ+lTHV9lChoBmgJaA9DCFQ4glSKneG/lIaUUpRoFUsyaBZHQKp0hTIeYD11fZQoaAZoCWgPQwgLXYlA9Q/bv5SGlFKUaBVLMmgWR0CqdGIJZ4fPdX2UKGgGaAloD0MIYVJ8fEL24b+UhpRSlGgVSzJoFkdAqnQ2lXRw63V9lChoBmgJaA9DCOD0Lt6PW+u/lIaUUpRoFUsyaBZHQKp0EyAQQMB1fZQoaAZoCWgPQwi8ehUZHRDgv5SGlFKUaBVLMmgWR0CqdTqDK5kLdX2UKGgGaAloD0MIR8uBHmpb4L+UhpRSlGgVSzJoFkdAqnUXYYixFHV9lChoBmgJaA9DCFBu2/eoP+a/lIaUUpRoFUsyaBZHQKp07D1oQFt1fZQoaAZoCWgPQwgf1hu1wvTpv5SGlFKUaBVLMmgWR0CqdMiZF5OadX2UKGgGaAloD0MIEaYol8Yv0r+UhpRSlGgVSzJoFkdAqnXqsMiKSHV9lChoBmgJaA9DCAWHF0SkpvG/lIaUUpRoFUsyaBZHQKp1x39JjDt1fZQoaAZoCWgPQwiKHvgYrDjZv5SGlFKUaBVLMmgWR0CqdZwLE1l5dX2UKGgGaAloD0MIfCjRksdT47+UhpRSlGgVSzJoFkdAqnV4mAskIHV9lChoBmgJaA9DCLvs153uPOG/lIaUUpRoFUsyaBZHQKp2n2QGOdZ1fZQoaAZoCWgPQwhnf6Dcti/wv5SGlFKUaBVLMmgWR0CqdnxKYiPidX2UKGgGaAloD0MIeCl1yThGyL+UhpRSlGgVSzJoFkdAqnZQ0oBq9HV9lChoBmgJaA9DCOrKZ3ke3OK/lIaUUpRoFUsyaBZHQKp2LWXkYGd1fZQoaAZoCWgPQwhprP2d7dHuv5SGlFKUaBVLMmgWR0Cqd03Y150KdX2UKGgGaAloD0MIldIzvcTY4L+UhpRSlGgVSzJoFkdAqncqu+yquXV9lChoBmgJaA9DCNzxJr9FJ+a/lIaUUpRoFUsyaBZHQKp2/y3CsOp1fZQoaAZoCWgPQwhY4gFlU67uv5SGlFKUaBVLMmgWR0CqdtuuzQeFdX2UKGgGaAloD0MIo+nsZHCU1L+UhpRSlGgVSzJoFkdAqnf6QRwqAnV9lChoBmgJaA9DCOPg0jHnGeC/lIaUUpRoFUsyaBZHQKp31y6tknV1fZQoaAZoCWgPQwiBzTl4JjTRv5SGlFKUaBVLMmgWR0Cqd6u63AmBdX2UKGgGaAloD0MIUmLX9nbL4b+UhpRSlGgVSzJoFkdAqneIVuaWonV9lChoBmgJaA9DCMjvbfqzn+a/lIaUUpRoFUsyaBZHQKp4q/QjUut1fZQoaAZoCWgPQwjAQXv18VDhv5SGlFKUaBVLMmgWR0CqeIjnNgSfdX2UKGgGaAloD0MIlPsdigL95L+UhpRSlGgVSzJoFkdAqnhdfVqesnV9lChoBmgJaA9DCF4sDJHTV+O/lIaUUpRoFUsyaBZHQKp4OgsbvPV1fZQoaAZoCWgPQwhlcmpnmNq+v5SGlFKUaBVLMmgWR0CqeVnHeaa1dX2UKGgGaAloD0MIguLHmLsW4r+UhpRSlGgVSzJoFkdAqnk2pqASWnV9lChoBmgJaA9DCGxDxTh/E/C/lIaUUpRoFUsyaBZHQKp5CyfthNN1fZQoaAZoCWgPQwgfhetRuJ7gv5SGlFKUaBVLMmgWR0CqeOexwAEMdX2UKGgGaAloD0MIO29jsyPV67+UhpRSlGgVSzJoFkdAqnoPC66J7HV9lChoBmgJaA9DCNmY1xGHrPG/lIaUUpRoFUsyaBZHQKp56/HHWBl1fZQoaAZoCWgPQwh3vTRFgFPsv5SGlFKUaBVLMmgWR0CqecB3qzJIdX2UKGgGaAloD0MI7NrebkmO4r+UhpRSlGgVSzJoFkdAqnmdBdD6WXV9lChoBmgJaA9DCKweMA+ZMvO/lIaUUpRoFUsyaBZHQKp6vGG21D11fZQoaAZoCWgPQwgkRs8tdCXhv5SGlFKUaBVLMmgWR0CqeplF+d9VdX2UKGgGaAloD0MIoWRyameY7L+UhpRSlGgVSzJoFkdAqnptpmEoOXV9lChoBmgJaA9DCDiB6bRug+q/lIaUUpRoFUsyaBZHQKp6SjASFoN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.29 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a9", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8122826661216095, "std_reward": 0.37830610749161186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-25T14:21:24.809448"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cee53257f5cb2d12e707d038475bd0271a2df60dc4f3478589748647f015083
|
3 |
size 2381
|