Isaacks commited on
Commit
0f632c6
1 Parent(s): 9ceff16

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - image-segmentation
6
+ - vision
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-finetuned-ihc
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-finetuned-ihc
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the Isaacks/ihc_slide_tissue dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - eval_loss: 0.0326
21
+ - eval_mean_iou: 0.0
22
+ - eval_mean_accuracy: nan
23
+ - eval_overall_accuracy: nan
24
+ - eval_accuracy_background: nan
25
+ - eval_accuracy_tissue: nan
26
+ - eval_iou_background: 0.0
27
+ - eval_iou_tissue: 0.0
28
+ - eval_runtime: 19.1281
29
+ - eval_samples_per_second: 0.784
30
+ - eval_steps_per_second: 0.105
31
+ - epoch: 9.15
32
+ - step: 183
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 6e-05
52
+ - train_batch_size: 8
53
+ - eval_batch_size: 8
54
+ - seed: 1337
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: polynomial
57
+ - training_steps: 10000
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.31.0
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.14.2
64
+ - Tokenizers 0.13.3