# -*- coding: utf-8 -*- | |
"""xlm-roberta-large.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/18YiC93vkjig-o550pHFJSB3bCQ7rhb4M | |
""" | |
!pip install transformers datasets seqeval huggingface_hub | |
# Standard library imports | |
import os # Provides functions for interacting with the operating system | |
import warnings # Used to handle or suppress warnings | |
import numpy as np # Essential for numerical operations and array manipulation | |
import torch # PyTorch library for tensor computations and model handling | |
import ast # Used for safe evaluation of strings to Python objects (e.g., parsing tokens) | |
# Hugging Face and Transformers imports | |
from datasets import load_dataset # Loads datasets for model training and evaluation | |
from transformers import ( | |
AutoTokenizer, # Initializes a tokenizer from a pre-trained model | |
DataCollatorForTokenClassification, # Handles padding and formatting of token classification data | |
TrainingArguments, # Defines training parameters like batch size and learning rate | |
Trainer, # High-level API for managing training and evaluation | |
AutoModelForTokenClassification, # Loads a pre-trained model for token classification tasks | |
get_linear_schedule_with_warmup, # Learning rate scheduler for gradual warm-up and linear decay | |
EarlyStoppingCallback # Callback to stop training if validation performance plateaus | |
) | |
# Hugging Face Hub | |
from huggingface_hub import login # Allows logging in to Hugging Face Hub to upload models | |
# seqeval metrics for NER evaluation | |
from seqeval.metrics import precision_score, recall_score, f1_score, classification_report | |
# Provides precision, recall, F1-score, and classification report for evaluating NER model performance | |
# Log in to Hugging Face Hub | |
login(token="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") | |
# Disable WandB (Weights & Biases) logging to avoid unwanted log outputs during training | |
os.environ["WANDB_DISABLED"] = "true" | |
# Suppress warning messages to keep output clean, especially during training and evaluation | |
warnings.filterwarnings("ignore") | |
# Load the Azerbaijani NER dataset from Hugging Face | |
dataset = load_dataset("LocalDoc/azerbaijani-ner-dataset") | |
print(dataset) # Display dataset structure (e.g., train/validation splits) | |
# Preprocessing function to format tokens and NER tags correctly | |
def preprocess_example(example): | |
try: | |
# Convert string of tokens to a list and parse NER tags to integers | |
example["tokens"] = ast.literal_eval(example["tokens"]) | |
example["ner_tags"] = list(map(int, ast.literal_eval(example["ner_tags"]))) | |
except (ValueError, SyntaxError) as e: | |
# Skip and log malformed examples, ensuring error resilience | |
print(f"Skipping malformed example: {example['index']} due to error: {e}") | |
example["tokens"] = [] | |
example["ner_tags"] = [] | |
return example | |
# Apply preprocessing to each dataset entry, ensuring consistent formatting | |
dataset = dataset.map(preprocess_example) | |
# Initialize the tokenizer for multilingual NER using xlm-roberta-large | |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large") | |
# Function to tokenize input and align labels with tokenized words | |
def tokenize_and_align_labels(example): | |
# Tokenize the sentence while preserving word boundaries for correct NER tag alignment | |
tokenized_inputs = tokenizer( | |
example["tokens"], # List of words (tokens) in the sentence | |
truncation=True, # Truncate sentences longer than max_length | |
is_split_into_words=True, # Specify that input is a list of words | |
padding="max_length", # Pad to maximum sequence length | |
max_length=128, # Set the maximum sequence length to 128 tokens | |
) | |
labels = [] # List to store aligned NER labels | |
word_ids = tokenized_inputs.word_ids() # Get word IDs for each token | |
previous_word_idx = None # Initialize previous word index for tracking | |
# Loop through word indices to align NER tags with subword tokens | |
for word_idx in word_ids: | |
if word_idx is None: | |
labels.append(-100) # Set padding token labels to -100 (ignored in loss) | |
elif word_idx != previous_word_idx: | |
# Assign the label from example's NER tags if word index matches | |
labels.append(example["ner_tags"][word_idx] if word_idx < len(example["ner_tags"]) else -100) | |
else: | |
labels.append(-100) # Label subword tokens with -100 to avoid redundant labels | |
previous_word_idx = word_idx # Update previous word index | |
tokenized_inputs["labels"] = labels # Add labels to tokenized inputs | |
return tokenized_inputs | |
# Apply tokenization and label alignment function to the dataset | |
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=False) | |
# Create a 90-10 split of the dataset for training and validation | |
tokenized_datasets = tokenized_datasets["train"].train_test_split(test_size=0.1) | |
print(tokenized_datasets) # Output structure of split datasets | |
# Define a list of entity labels for NER tagging with B- (beginning) and I- (inside) markers | |
label_list = [ | |
"O", # Outside of a named entity | |
"B-PERSON", "I-PERSON", # Person name (e.g., "John" in "John Doe") | |
"B-LOCATION", "I-LOCATION", # Geographical location (e.g., "Paris") | |
"B-ORGANISATION", "I-ORGANISATION", # Organization name (e.g., "UNICEF") | |
"B-DATE", "I-DATE", # Date entity (e.g., "2024-11-05") | |
"B-TIME", "I-TIME", # Time (e.g., "12:00 PM") | |
"B-MONEY", "I-MONEY", # Monetary values (e.g., "$20") | |
"B-PERCENTAGE", "I-PERCENTAGE", # Percentage values (e.g., "20%") | |
"B-FACILITY", "I-FACILITY", # Physical facilities (e.g., "Airport") | |
"B-PRODUCT", "I-PRODUCT", # Product names (e.g., "iPhone") | |
"B-EVENT", "I-EVENT", # Named events (e.g., "Olympics") | |
"B-ART", "I-ART", # Works of art (e.g., "Mona Lisa") | |
"B-LAW", "I-LAW", # Laws and legal documents (e.g., "Article 50") | |
"B-LANGUAGE", "I-LANGUAGE", # Languages (e.g., "Azerbaijani") | |
"B-GPE", "I-GPE", # Geopolitical entities (e.g., "Europe") | |
"B-NORP", "I-NORP", # Nationalities, religious groups, political groups | |
"B-ORDINAL", "I-ORDINAL", # Ordinal indicators (e.g., "first", "second") | |
"B-CARDINAL", "I-CARDINAL", # Cardinal numbers (e.g., "three") | |
"B-DISEASE", "I-DISEASE", # Diseases (e.g., "COVID-19") | |
"B-CONTACT", "I-CONTACT", # Contact info (e.g., email or phone number) | |
"B-ADAGE", "I-ADAGE", # Common sayings or adages | |
"B-QUANTITY", "I-QUANTITY", # Quantities (e.g., "5 km") | |
"B-MISCELLANEOUS", "I-MISCELLANEOUS", # Miscellaneous entities not fitting other categories | |
"B-POSITION", "I-POSITION", # Job titles or positions (e.g., "CEO") | |
"B-PROJECT", "I-PROJECT" # Project names (e.g., "Project Apollo") | |
] | |
# Initialize a data collator to handle padding and formatting for token classification | |
data_collator = DataCollatorForTokenClassification(tokenizer) | |
# Load a pre-trained model for token classification, adapted for NER tasks | |
model = AutoModelForTokenClassification.from_pretrained( | |
"xlm-roberta-large", # Base model (multilingual XLM-RoBERTa) for NER | |
num_labels=len(label_list) # Set the number of output labels to match NER categories | |
) | |
# Define a function to compute evaluation metrics for the model's predictions | |
def compute_metrics(p): | |
predictions, labels = p # Unpack predictions and true labels from the input | |
# Convert logits to predicted label indices by taking the argmax along the last axis | |
predictions = np.argmax(predictions, axis=2) | |
# Filter out special padding labels (-100) and convert indices to label names | |
true_labels = [[label_list[l] for l in label if l != -100] for label in labels] | |
true_predictions = [ | |
[label_list[p] for (p, l) in zip(prediction, label) if l != -100] | |
for prediction, label in zip(predictions, labels) | |
] | |
# Print a detailed classification report for each label category | |
print(classification_report(true_labels, true_predictions)) | |
# Calculate and return key evaluation metrics | |
return { | |
# Precision measures the accuracy of predicted positive instances | |
# Important in NER to ensure entity predictions are correct and reduce false positives. | |
"precision": precision_score(true_labels, true_predictions), | |
# Recall measures the model's ability to capture all relevant entities | |
# Essential in NER to ensure the model captures all entities, reducing false negatives. | |
"recall": recall_score(true_labels, true_predictions), | |
# F1-score is the harmonic mean of precision and recall, balancing both metrics | |
# Useful in NER for providing an overall performance measure, especially when precision and recall are both important. | |
"f1": f1_score(true_labels, true_predictions), | |
} | |
# Set up training arguments for model training, defining essential training configurations | |
training_args = TrainingArguments( | |
output_dir="./results", # Directory to save model checkpoints and final outputs | |
evaluation_strategy="epoch", # Evaluate model on the validation set at the end of each epoch | |
save_strategy="epoch", # Save model checkpoints at the end of each epoch | |
learning_rate=2e-5, # Set a low learning rate to ensure stable training for fine-tuning | |
per_device_train_batch_size=128, # Number of examples per batch during training, balancing speed and memory | |
per_device_eval_batch_size=128, # Number of examples per batch during evaluation | |
num_train_epochs=12, # Number of full training passes over the dataset | |
weight_decay=0.005, # Regularization term to prevent overfitting by penalizing large weights | |
fp16=True, # Use 16-bit floating point for faster and memory-efficient training | |
logging_dir='./logs', # Directory to store training logs | |
save_total_limit=2, # Keep only the 2 latest model checkpoints to save storage space | |
load_best_model_at_end=True, # Load the best model based on metrics at the end of training | |
metric_for_best_model="f1", # Use F1-score to determine the best model checkpoint | |
report_to="none" # Disable reporting to external services (useful in local runs) | |
) | |
# Initialize the Trainer class to manage the training loop with all necessary components | |
trainer = Trainer( | |
model=model, # The pre-trained model to be fine-tuned | |
args=training_args, # Training configuration parameters defined in TrainingArguments | |
train_dataset=tokenized_datasets["train"], # Tokenized training dataset | |
eval_dataset=tokenized_datasets["test"], # Tokenized validation dataset | |
tokenizer=tokenizer, # Tokenizer used for processing input text | |
data_collator=data_collator, # Data collator for padding and batching during training | |
compute_metrics=compute_metrics, # Function to calculate evaluation metrics like precision, recall, F1 | |
callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] # Stop training early if validation metrics don't improve for 2 epochs | |
) | |
# Begin the training process and capture the training metrics | |
training_metrics = trainer.train() | |
# Evaluate the model on the validation set after training | |
eval_results = trainer.evaluate() | |
# Print evaluation results, including precision, recall, and F1-score | |
print(eval_results) | |
# Define the directory where the trained model and tokenizer will be saved | |
save_directory = "./xlm-roberta-large" | |
# Save the trained model to the specified directory | |
model.save_pretrained(save_directory) | |
# Save the tokenizer to the same directory for compatibility with the model | |
tokenizer.save_pretrained(save_directory) | |
from transformers import pipeline | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(save_directory) | |
model = AutoModelForTokenClassification.from_pretrained(save_directory) | |
# Initialize the NER pipeline | |
device = 0 if torch.cuda.is_available() else -1 | |
nlp_ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple", device=device) | |
label_mapping = {f"LABEL_{i}": label for i, label in enumerate(label_list) if label != "O"} | |
def evaluate_model(test_texts, true_labels): | |
predictions = [] | |
for i, text in enumerate(test_texts): | |
pred_entities = nlp_ner(text) | |
pred_labels = [label_mapping.get(entity["entity_group"], "O") for entity in pred_entities if entity["entity_group"] in label_mapping] | |
if len(pred_labels) != len(true_labels[i]): | |
print(f"Warning: Inconsistent number of entities in sample {i+1}. Adjusting predicted entities.") | |
pred_labels = pred_labels[:len(true_labels[i])] | |
predictions.append(pred_labels) | |
if all(len(true) == len(pred) for true, pred in zip(true_labels, predictions)): | |
precision = precision_score(true_labels, predictions) | |
recall = recall_score(true_labels, predictions) | |
f1 = f1_score(true_labels, predictions) | |
print("Precision:", precision) | |
print("Recall:", recall) | |
print("F1-Score:", f1) | |
print(classification_report(true_labels, predictions)) | |
else: | |
print("Error: Could not align all samples correctly for evaluation.") | |
test_texts = ["Shahla Khuduyeva və Pasha Sığorta şirkəti haqqında məlumat."] | |
true_labels = [["B-PERSON", "B-ORGANISATION"]] | |
evaluate_model(test_texts, true_labels) | |