Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
language:
|
2 |
+
- zh
|
3 |
+
tags:
|
4 |
+
- vits
|
5 |
+
license: cc-by-nc-4.0
|
6 |
+
pipeline_tag: text-to-speech
|
7 |
+
|
8 |
+
撰寫 Model Card 的關鍵在於清楚而詳細地描述模型的用途、架構、訓練數據、性能評估以及使用方法。以下是一個範例的 VITS Model Card,可以參考並進行修改以符合你的需求:
|
9 |
+
---
|
10 |
+
|
11 |
+
# Model Card for [Your VITS Model Name]
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
- **Model Name**: [Your VITS Model Name]
|
15 |
+
- **Model Type**: TTS (Text-to-Speech)
|
16 |
+
- **Architecture**: VITS (Variational Inference Text-to-Speech)
|
17 |
+
- **Author**: [Your Name or Organization]
|
18 |
+
- **Repository**: [Link to your Huggingface repository]
|
19 |
+
- **Paper**: [Link to the original VITS paper, if applicable]
|
20 |
+
|
21 |
+
## Model Description
|
22 |
+
VITS (Variational Inference Text-to-Speech) 是一種新穎的 TTS 模型架構,能夠生成高質量且自然的語音。本模型基於 VITS 架構,旨在提供高效的語音合成功能,適用於多種應用場景。
|
23 |
+
|
24 |
+
## Usage
|
25 |
+
### Inference
|
26 |
+
要使用此模型進行語音合成,您可以使用以下代碼示例:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import Wav2Vec2Processor, VITSModel
|
30 |
+
|
31 |
+
processor = Wav2Vec2Processor.from_pretrained("[Your Huggingface Model Repository]")
|
32 |
+
model = VITSModel.from_pretrained("[Your Huggingface Model Repository]")
|
33 |
+
|
34 |
+
inputs = processor("要合成的文本", return_tensors="pt")
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
speech = model.generate_speech(inputs.input_values)
|
38 |
+
|
39 |
+
# Save or play the generated speech
|
40 |
+
with open("output.wav", "wb") as f:
|
41 |
+
f.write(speech)
|
42 |
+
```
|
43 |
+
|
44 |
+
### Training
|
45 |
+
如果您需要訓練此模型,請參考以下的代碼示例:
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import VITSConfig, VITSForSpeechSynthesis, Trainer, TrainingArguments
|
49 |
+
|
50 |
+
config = VITSConfig()
|
51 |
+
model = VITSForSpeechSynthesis(config)
|
52 |
+
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir="./results",
|
55 |
+
evaluation_strategy="epoch",
|
56 |
+
per_device_train_batch_size=8,
|
57 |
+
per_device_eval_batch_size=8,
|
58 |
+
num_train_epochs=3,
|
59 |
+
save_steps=10_000,
|
60 |
+
save_total_limit=2,
|
61 |
+
)
|
62 |
+
|
63 |
+
trainer = Trainer(
|
64 |
+
model=model,
|
65 |
+
args=training_args,
|
66 |
+
train_dataset=your_train_dataset,
|
67 |
+
eval_dataset=your_eval_dataset,
|
68 |
+
)
|
69 |
+
|
70 |
+
trainer.train()
|
71 |
+
```
|
72 |
+
|
73 |
+
## Model Performance
|
74 |
+
- **Training Dataset**: 描述用於訓練模型的數據集。
|
75 |
+
- **Evaluation Metrics**: 描述模型性能評估所使用的指標,如 MOS (Mean Opinion Score) 或 PESQ (Perceptual Evaluation of Speech Quality)。
|
76 |
+
- **Results**: 提供模型在測試數據集上的性能數據。
|
77 |
+
|
78 |
+
## Limitations and Bias
|
79 |
+
- **Known Limitations**: 描述模型的已知限制,如對某些語言或口音的支持較差。
|
80 |
+
- **Potential Bias**: 描述模型可能存在的偏見和倫理問題。
|
81 |
+
|
82 |
+
## Citation
|
83 |
+
如果您在研究中使用了此模型,請引用以下文獻:
|
84 |
+
|
85 |
+
```
|
86 |
+
@inproceedings{vits2021,
|
87 |
+
title={Variational Inference Text-to-Speech},
|
88 |
+
author={Your Name and Co-Authors},
|
89 |
+
booktitle={Conference on Your Conference Name},
|
90 |
+
year={2021}
|
91 |
+
}
|
92 |
+
```
|
93 |
+
|
94 |
+
## Acknowledgements
|
95 |
+
感謝 [Your Team or Collaborators] 對此模型開發的支持和貢獻。
|
96 |
+
|
97 |
+
---
|