language: - zh tags: - vits license: cc-by-nc-4.0 pipeline_tag: text-to-speech 撰寫 Model Card 的關鍵在於清楚而詳細地描述模型的用途、架構、訓練數據、性能評估以及使用方法。以下是一個範例的 VITS Model Card,可以參考並進行修改以符合你的需求: --- # Model Card for [Your VITS Model Name] ## Model Details - **Model Name**: [Your VITS Model Name] - **Model Type**: TTS (Text-to-Speech) - **Architecture**: VITS (Variational Inference Text-to-Speech) - **Author**: [Your Name or Organization] - **Repository**: [Link to your Huggingface repository] - **Paper**: [Link to the original VITS paper, if applicable] ## Model Description VITS (Variational Inference Text-to-Speech) 是一種新穎的 TTS 模型架構,能夠生成高質量且自然的語音。本模型基於 VITS 架構,旨在提供高效的語音合成功能,適用於多種應用場景。 ## Usage ### Inference 要使用此模型進行語音合成,您可以使用以下代碼示例: ```python from transformers import Wav2Vec2Processor, VITSModel processor = Wav2Vec2Processor.from_pretrained("[Your Huggingface Model Repository]") model = VITSModel.from_pretrained("[Your Huggingface Model Repository]") inputs = processor("要合成的文本", return_tensors="pt") with torch.no_grad(): speech = model.generate_speech(inputs.input_values) # Save or play the generated speech with open("output.wav", "wb") as f: f.write(speech) ``` ### Training 如果您需要訓練此模型,請參考以下的代碼示例: ```python from transformers import VITSConfig, VITSForSpeechSynthesis, Trainer, TrainingArguments config = VITSConfig() model = VITSForSpeechSynthesis(config) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, save_steps=10_000, save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, train_dataset=your_train_dataset, eval_dataset=your_eval_dataset, ) trainer.train() ``` ## Model Performance - **Training Dataset**: 描述用於訓練模型的數據集。 - **Evaluation Metrics**: 描述模型性能評估所使用的指標,如 MOS (Mean Opinion Score) 或 PESQ (Perceptual Evaluation of Speech Quality)。 - **Results**: 提供模型在測試數據集上的性能數據。 ## Limitations and Bias - **Known Limitations**: 描述模型的已知限制,如對某些語言或口音的支持較差。 - **Potential Bias**: 描述模型可能存在的偏見和倫理問題。 ## Citation 如果您在研究中使用了此模型,請引用以下文獻: ``` @inproceedings{vits2021, title={Variational Inference Text-to-Speech}, author={Your Name and Co-Authors}, booktitle={Conference on Your Conference Name}, year={2021} } ``` ## Acknowledgements 感謝 [Your Team or Collaborators] 對此模型開發的支持和貢獻。 ---