File size: 2,929 Bytes
cc49f32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4596f
 
 
 
 
 
 
 
 
 
 
 
 
 
cc49f32
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
library_name: peft
language:
- zh
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-zh-TW-clean-1
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed
      type: JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed
    metrics:
    - type: wer
      value: 40.07234726688103
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-turbo-zh-TW-clean-1

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/common_voice_16_1_zh_TW_clean_preprocessed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2641
- Wer: 40.0723
- Cer: 11.4336

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Cer     | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:-------:|:---------------:|:-------:|
| No log        | 0      | 0    | 22.9952 | 2.8297          | 83.7420 |
| 2.0577        | 0.9987 | 377  | 14.2907 | 0.2666          | 47.9904 |
| 1.9482        | 2.0    | 755  | 14.4991 | 0.2770          | 47.9703 |
| 1.1107        | 2.9987 | 1132 | 15.0615 | 0.2886          | 48.4124 |
| 0.7225        | 4.0    | 1510 | 13.4020 | 0.2736          | 46.2420 |
| 0.5901        | 4.9987 | 1887 | 13.7309 | 0.2759          | 45.2572 |
| 0.4879        | 6.0    | 2265 | 12.9777 | 0.2740          | 44.9759 |
| 0.1874        | 6.9987 | 2642 | 12.7316 | 0.2663          | 44.2524 |
| 0.0544        | 8.0    | 3020 | 12.2295 | 0.2712          | 42.6648 |
| 0.0128        | 8.9987 | 3397 | 11.6068 | 0.2669          | 40.8963 |
| 0.004         | 9.9868 | 3770 | 11.4336 | 0.2641          | 40.0723 |
| 0.004         | 9.9868 | 3770 | 0.2641  | 40.0723         | 11.4336 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.0
- Datasets 3.0.2
- Tokenizers 0.20.1