JairamKanna commited on
Commit
1b42acb
1 Parent(s): 147bb05

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - JairamKanna/Tamil-vulnerable-speech
4
+ language:
5
+ - ta
6
+ metrics:
7
+ - wer
8
+ library_name: transformers
9
+ pipeline_tag: automatic-speech-recognition
10
+ ---
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+ This model is the fine-tuned version of Whisper-large-v2 model for Speech Recognition task for vulnerable individuals in Tamil.
16
+
17
+
18
+ #### Preprocessing [optional]
19
+
20
+
21
+
22
+
23
+ #### Training Hyperparameters
24
+
25
+ ** training_args = Seq2SeqTrainingArguments(
26
+ output_dir="./pretrainedwhisper-medium-native-v2", # change to a repo name of your choice
27
+ per_device_train_batch_size=4,
28
+ gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
29
+ learning_rate=1e-5,
30
+ warmup_steps=200,
31
+ max_steps=2000,
32
+ gradient_checkpointing=True,
33
+ fp16=True,
34
+ evaluation_strategy="steps",
35
+ per_device_eval_batch_size=8,
36
+ predict_with_generate=True,
37
+ generation_max_length=225,
38
+ save_steps=500,
39
+ eval_steps=500,
40
+ logging_steps=25,
41
+ report_to=["tensorboard"],
42
+ load_best_model_at_end=True,
43
+ metric_for_best_model="wer",
44
+ greater_is_better=False,
45
+ push_to_hub=True,
46
+ optim="adamw_bnb_8bit"
47
+ )
48
+
49
+
50
+ #### Metrics
51
+
52
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
53
+ WER is the evaluation metrics used here.
54
+
55
+
56
+
57
+
58
+
59
+