JanLilan commited on
Commit
30e73d3
·
1 Parent(s): 3c419e7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - marsyas/gtzan
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: distilhubert_finetuned-finetuned-gtzan
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distilhubert_finetuned-finetuned-gtzan
17
+
18
+ This model is a fine-tuned version of [JanLilan/distilhubert_finetuned-distilhubert](https://huggingface.co/JanLilan/distilhubert_finetuned-distilhubert) on the GTZAN dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6325
21
+ - Accuracy: 0.9
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0005
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 16
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 0.8777 | 0.99 | 33 | 0.4485 | 0.8333 |
57
+ | 0.6913 | 2.0 | 67 | 1.0592 | 0.7 |
58
+ | 0.5494 | 2.99 | 100 | 0.6168 | 0.7667 |
59
+ | 0.3589 | 4.0 | 134 | 0.7820 | 0.7833 |
60
+ | 0.2049 | 4.99 | 167 | 0.9303 | 0.7833 |
61
+ | 0.1663 | 6.0 | 201 | 0.3570 | 0.9 |
62
+ | 0.0446 | 6.99 | 234 | 0.5636 | 0.8667 |
63
+ | 0.0313 | 8.0 | 268 | 0.6592 | 0.85 |
64
+ | 0.0007 | 8.99 | 301 | 0.4721 | 0.8833 |
65
+ | 0.0004 | 9.85 | 330 | 0.6325 | 0.9 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.28.0
71
+ - Pytorch 2.0.1+cu118
72
+ - Datasets 2.14.5
73
+ - Tokenizers 0.13.3