update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- marsyas/gtzan
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: distilhubert_finetuned-finetuned-gtzan
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# distilhubert_finetuned-finetuned-gtzan
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [JanLilan/distilhubert_finetuned-distilhubert](https://huggingface.co/JanLilan/distilhubert_finetuned-distilhubert) on the GTZAN dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6325
|
21 |
+
- Accuracy: 0.9
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0005
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 16
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 10
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 0.8777 | 0.99 | 33 | 0.4485 | 0.8333 |
|
57 |
+
| 0.6913 | 2.0 | 67 | 1.0592 | 0.7 |
|
58 |
+
| 0.5494 | 2.99 | 100 | 0.6168 | 0.7667 |
|
59 |
+
| 0.3589 | 4.0 | 134 | 0.7820 | 0.7833 |
|
60 |
+
| 0.2049 | 4.99 | 167 | 0.9303 | 0.7833 |
|
61 |
+
| 0.1663 | 6.0 | 201 | 0.3570 | 0.9 |
|
62 |
+
| 0.0446 | 6.99 | 234 | 0.5636 | 0.8667 |
|
63 |
+
| 0.0313 | 8.0 | 268 | 0.6592 | 0.85 |
|
64 |
+
| 0.0007 | 8.99 | 301 | 0.4721 | 0.8833 |
|
65 |
+
| 0.0004 | 9.85 | 330 | 0.6325 | 0.9 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.28.0
|
71 |
+
- Pytorch 2.0.1+cu118
|
72 |
+
- Datasets 2.14.5
|
73 |
+
- Tokenizers 0.13.3
|