End of training
Browse files- README.md +78 -195
- all_results.json +17 -0
- eval_results.json +12 -0
- train_results.json +8 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,82 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
###
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
base_model: dccuchile/bert-base-spanish-wwm-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: Bert_TPF_v10
|
8 |
+
results: []
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Bert_TPF_v10
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Accuracy@en: 0.8315
|
19 |
+
- F1@en: 0.8323
|
20 |
+
- Precision@en: 0.8373
|
21 |
+
- Recall@en: 0.8368
|
22 |
+
- Loss@en: 0.6173
|
23 |
+
- Loss: 0.6173
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 20
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Accuracy@en | F1@en | Precision@en | Recall@en | Loss@en | Validation Loss |
|
54 |
+
|:-------------:|:-----:|:-----:|:-----------:|:------:|:------------:|:---------:|:-------:|:---------------:|
|
55 |
+
| 3.2405 | 1.0 | 552 | 0.2037 | 0.1306 | 0.1465 | 0.2065 | 2.5934 | 2.5934 |
|
56 |
+
| 2.3891 | 2.0 | 1104 | 0.2992 | 0.2349 | 0.2586 | 0.3058 | 2.0876 | 2.0876 |
|
57 |
+
| 2.0117 | 3.0 | 1656 | 0.3765 | 0.3448 | 0.3683 | 0.3839 | 1.8638 | 1.8638 |
|
58 |
+
| 1.7804 | 4.0 | 2208 | 0.4619 | 0.4287 | 0.4433 | 0.4705 | 1.6337 | 1.6337 |
|
59 |
+
| 1.4913 | 5.0 | 2760 | 0.5228 | 0.4905 | 0.5357 | 0.5306 | 1.3950 | 1.3950 |
|
60 |
+
| 1.2177 | 6.0 | 3312 | 0.5696 | 0.5529 | 0.6054 | 0.5773 | 1.2562 | 1.2562 |
|
61 |
+
| 1.0274 | 7.0 | 3864 | 0.6278 | 0.6086 | 0.6598 | 0.6360 | 1.0466 | 1.0466 |
|
62 |
+
| 0.8372 | 8.0 | 4416 | 0.7050 | 0.7007 | 0.7254 | 0.7104 | 0.8734 | 0.8734 |
|
63 |
+
| 0.67 | 9.0 | 4968 | 0.7407 | 0.7373 | 0.7510 | 0.7463 | 0.8112 | 0.8112 |
|
64 |
+
| 0.5259 | 10.0 | 5520 | 0.8 | 0.7999 | 0.8069 | 0.8050 | 0.6594 | 0.6594 |
|
65 |
+
| 0.4333 | 11.0 | 6072 | 0.8095 | 0.8056 | 0.8219 | 0.8159 | 0.6305 | 0.6305 |
|
66 |
+
| 0.3503 | 12.0 | 6624 | 0.8019 | 0.7985 | 0.8132 | 0.8074 | 0.6698 | 0.6698 |
|
67 |
+
| 0.2961 | 13.0 | 7176 | 0.8315 | 0.8323 | 0.8373 | 0.8368 | 0.6173 | 0.6173 |
|
68 |
+
| 0.2441 | 14.0 | 7728 | 0.8450 | 0.8459 | 0.8482 | 0.8493 | 0.6287 | 0.6287 |
|
69 |
+
| 0.2078 | 15.0 | 8280 | 0.8471 | 0.8477 | 0.8508 | 0.8511 | 0.6280 | 0.6280 |
|
70 |
+
| 0.1857 | 16.0 | 8832 | 0.8463 | 0.8470 | 0.8513 | 0.8510 | 0.6293 | 0.6293 |
|
71 |
+
| 0.164 | 17.0 | 9384 | 0.8471 | 0.8480 | 0.8510 | 0.8512 | 0.6371 | 0.6371 |
|
72 |
+
| 0.1467 | 18.0 | 9936 | 0.8489 | 0.8497 | 0.8536 | 0.8532 | 0.6410 | 0.6410 |
|
73 |
+
| 0.1409 | 19.0 | 10488 | 0.8489 | 0.8496 | 0.8535 | 0.8528 | 0.6396 | 0.6396 |
|
74 |
+
| 0.1378 | 20.0 | 11040 | 0.8497 | 0.8505 | 0.8543 | 0.8537 | 0.6395 | 0.6395 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.44.2
|
80 |
+
- Pytorch 2.5.0+cu121
|
81 |
+
- Datasets 3.0.2
|
82 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 20.0,
|
3 |
+
"eval_accuracy@en": 0.8314814814814815,
|
4 |
+
"eval_f1@en": 0.8323234021579463,
|
5 |
+
"eval_loss": 0.6172820329666138,
|
6 |
+
"eval_loss@en": 0.6172820329666138,
|
7 |
+
"eval_precision@en": 0.8373285994054867,
|
8 |
+
"eval_recall@en": 0.8367783650241256,
|
9 |
+
"eval_runtime": 107.5607,
|
10 |
+
"eval_samples_per_second": 35.143,
|
11 |
+
"eval_steps_per_second": 2.203,
|
12 |
+
"total_flos": 4.6429459034112e+16,
|
13 |
+
"train_loss": 0.8748937793399977,
|
14 |
+
"train_runtime": 23732.1257,
|
15 |
+
"train_samples_per_second": 7.433,
|
16 |
+
"train_steps_per_second": 0.465
|
17 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 20.0,
|
3 |
+
"eval_accuracy@en": 0.8314814814814815,
|
4 |
+
"eval_f1@en": 0.8323234021579463,
|
5 |
+
"eval_loss": 0.6172820329666138,
|
6 |
+
"eval_loss@en": 0.6172820329666138,
|
7 |
+
"eval_precision@en": 0.8373285994054867,
|
8 |
+
"eval_recall@en": 0.8367783650241256,
|
9 |
+
"eval_runtime": 107.5607,
|
10 |
+
"eval_samples_per_second": 35.143,
|
11 |
+
"eval_steps_per_second": 2.203
|
12 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 20.0,
|
3 |
+
"total_flos": 4.6429459034112e+16,
|
4 |
+
"train_loss": 0.8748937793399977,
|
5 |
+
"train_runtime": 23732.1257,
|
6 |
+
"train_samples_per_second": 7.433,
|
7 |
+
"train_steps_per_second": 0.465
|
8 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4e4b757e777572a67903c5350b8223d967a4048c911ee75f4d7790936fb91a4
|
3 |
+
size 5176
|